Sengitivity Analysis

»> A few concepts
— Impulse-Response

» What do we know how to do
— By MPclass

» Related analyses
— Consistency, Redundancy, & Implied Equalities

» Some foundations
— Alternative/dual systems

» Some practical considerations
— Estimating results from partial information

An 'expert' isonewho doesn't know more than you but uses dlides.



| mpulse-Response Queries

Response
Impulse Data Solution
Data Drive Common
Solution Inverse Rate of substitution

| never met an optimum | didn't like,
— Milton M. Gutterman



| mpulse-Response Queries

Response
Impulse Data Solution
Data Drive Common
Solution Inverse Rate of substitution

» At what rate does the objective value change when | perturb some parameter?
For what range is this rate constant (or same functional form)?

» At what rate doesthe level (or price) change when | perturb some parameter?
For what range is this rate constant (or same functional form)?

1@Z*/p=kfor pT [P-L, P+U]

p = parameter

P = current value of p

Z* = optimal objective value
[L, U] = range of change

Z*\

oV



| mpulse-Response Queries

Response
Impulse Data Solution
Data Drive Common
Solution | nverse Rate of substitution

» How can | change some parameter to cause a 10% decrease in the min cost?
— e.g., decrease demand or make some inexpensive supply available

» How can | change some parameter to reach specified change in solution?
—e.g., Increase max oxygen to result in more glucose production.

1@Z*/p=kfor pT [P-L, P+U]

Z*\




| mpulse-Response Queries

Response
Impulse Data Solution
Data Drive Common
Solution Inverse Rate of substitution

» How can | change some parameter such that to remain in equilibrium, I must
change another (specified) parameter?
— e.g., decrease demand (D) and increase some (specified) supply (S):

DS = kDD

S




| mpulse-Response Queries

Response
Impulse Data Solution
Data Drive Common
Solution Inverse Rate of substitution

» How does one solution value change if | force a change in some other?

x> [9x*,

— Applies to phase-plane analysis.

*
X" A




Simplex Method UsesthisEvery Iteration
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Qualitative Analysis

» Glven directions of change of parameter, find
directions of change of solution

» Find qualitative relations among variables
(degrees of separation among metabolites or
reactions)

» Find stability properties (not numbers)
» Find pathways of certain interest

Modeling is about insight, not numbers.
— Arthur M. Geoffrion



A Quick Tour of What We Know

» Linear Programming (LP)
» Nonlinear Programming (NLP)

» Integer Programming &
Combinatorial Optimization (I1P/CO)

» Mixed-Integer Linear Programming (MILP)
» Mixed-Integer Nonlinear Programming (MINLP)

The pure and smpletruth israrely pure and never smple.
— Oscar Wilde



LP

» Basic solution

— Compatibility theory
» Interior solution

— Optimal partition
» General case

— Character of solution

Mostly well understood, but algorithms not perfect
Qualitative analysis strongest for network models, then Leontief

MOLP: Objective space gives important insights



NLP

» Lagrange multipliers

— Margina analysis with convexity; “rapid” re-optimization
» Dynamic programming

— Inherently parametric; needs separability & low dimension
» Pooling problem (bilinear constraints)

— Exploit geometry to overcome non-convexity
— Raised new concept — Essential objects (pools/reactions)

Sometimes wrong, but never in doubt.
— Michael Evans (Economics forecaster)



|P/CO

» Generally NP-hard
— Optimizers do not provide automatic support beyond LP

» Special focus on problem structures
— Scheduling, TSP, covering, packing, ...
» Computational logic
— Horn clauses. if A then B (single antecedent & consequent)
» New definitions
— Stability regions; ties with algorithm/heuristic used
» Visualization
— Diagrammatic; Iconic; Animation



MILP

» Loses structural information
— Preservelogic of IP part (binary variables to control fluxes)

Logical Algebraic

Xx=0® y=0 X—-y30
x=0® y=1 X+y31
x=1® y=0 X+y£1l
Xx=1® y=1 X—y£0



MINLP

» No theory; few special algorithms
(I. Grossman did some things for specific problems)

qery new body of discovery
Is mathematical in form,
because thereisno other
guidance we can have.

N




Othe Forms

» Multiple objectives

» Goal programs

» Fuzzy programs

» Stochastic programs

» Randomized programs
» Semi-definite programs



Summary of SA Capability

» Linear Programming (L P)
— Lotsknown; All queries, Must be careful

» Nonlinear Programming (NLP)
— Only specia cases (convex quadratic; bilinear)

» Integer Programming &
Combinatorial Optimization (1P/CO)

— Hard, but some good results, using logical structure

» Mixed-Integer Linear Programming (MILP)
— Use IP/ICO methods

» Mixed-Integer Nonlinear Programming (MINLP)
— Uncharted



Consistency, Redundancy, and Implied Equalities

System: S={Ax3 b}

Polyhedron: P(S) ={x: Ax 3 b}

Subsystems: S(1) ={A.x3 b foril I}
S={A.x3 Db fork? i}

|nconsistent: P(S) =

Redundant: P(S) = P(S)

Strongly Redundant: x1 P(S) ® A.x>b
Implied Equality: A.x=b foral xT P(S)

A model isto an analyst asa magnifying glassisto Sherlock Holmes
— it illuminates clues.



Example

S={0£ X, X £1, X;+X,3 b}

Redundant Implied equality Inconsistent
b=2 b>2

b=0
b>0



Foundation = Dual system

S={y30,yA=0,yb3 0}

Example
X 30
% a0 Y1 Y2 Ya Yar ¥ > O
—X, 31 Y1—Y3+tYs = 0
X -l Y2=YatYs = 0
XL+t X 7B ~Y3=Ya*bYs * O

A study of economics usually revealsthat the best time to buy anything islast year.
— Marty Allen



Certification

Property of Sistrue « S* isconsistent

Property of S S

Redundant Sy 2 0} & {y, <0}
Strongly redundant Sy, 2 0} & {y; <0, yb>0}
Implied equality Si& {y. >0, yb =0}

|nconsi stent S& {yb>0}

Y1 Y21 Y3 Yar Y5 ° O
Yy1=Ys+Y5=0
Yo—Y4+Ys=0

—Y3—Y,tbys° O




Certification of Redundancy

Property of Sistrue « S* isconsistent

Property of S S
Redundant Sy 2 0} & {y, <0}
Strongly redundant Sy, 2 0} & {y; <0, yb>0}
Implied equality Si& {y. >0, yb =0}
|nconsi stent S& {yb>0}
b=0 Y1: Y21 Y3 Y4’>§§3 0 ys<0
choosey =(1, 1,0, O, -1) Yi—Ys+tY:=0

Yo=Y tY5=0
—Y3— Y- 30 ® y;=y,=0



Certification of Strong Redundancy

Property of Sistrue « S* isconsistent

Property of S S
Redundant Sy 2 0} & {y, <0}
Strongly redundant Sy, 2 0} & {y; <0, yb>0}
Implied equality Si& {y. >0, yb =0}
|nconsi stent S& {yb>0}
b <0 Y1: Y21 Y3 Y4’>§§3 0 ys<0
choosey =(1, 1,0, O, -1) Yi—Ys+tY:=0
certifies strong redundancy Y2=Ya+¥s=0

because yb = —b >0 —Y3—Y,tbys® 0



Certification of Implied Equality

Property of Sistrue « S* isconsistent

Property of S S

Redundant Sy 2 0} & {y, <0}
Strongly redundant Sy, 2 0} & {y; <0, yb>0}
Implied equality Si& {y. >0, yb =0}

|nconsi stent S& {yb>0}

Y1 Y21 Y3 Yar Y5 ° O
Yy1=Ys+Y5=0
Yo—Y4+Ys=0

—Y3—Y,tbys° O




Certification of Implied Equality

Property of Sistrue « S* isconsistent

Property of S S
Redundant Sy 2 0} & {y, <0}
Strongly redundant Sy, 2 0} & {y; <0, yb>0}
Implied equality Si& {y. >0, yb =0}
|nconsi stent S& {yb>0}
b=2 Y1 Y2 Yar Yar ¥5° O
choosey:, 1,1, 1) Yi—Ys+tY:=0
T Yo—YstY5=0

plays no rolein implied equality —Y3—Yat2Y5° 0




Certification of Inconsistency

Property of Sistrue « S* isconsistent

Property of S S
Redundant Sy 2 0} & {y, <0}
Strongly redundant Sy, 2 0} & {y; <0, yb>0}
Implied equality Si& {y. >0, yb =0}
|nconsi stent S& {yb>0}
b>2 Y1 Y2 Yar Yar ¥5° O
choosey:, 1,1, 1) Yi—Ys+tY:=0
T Yo—YstY5=0

plays no role in inconsistency —Y3— Y, tbys2 0




Certification of Inconsistency

Property of Sistrue « S* isconsistent

Property of S S
Redundant Sy 2 0} & {y, <0}
Strongly redundant Sy, 2 0} & {y; <0, yb>0}
Implied equality Si& {y. >0, yb =0}
|nconsi stent S& {yb>0}

b>2

choosey =(0,0, 1, 1, 1)

certifies inconsistency
becauseyb=b-2>0

Y1 Y21 Y3 Yar Y5 ° O
Yy1=Ys+Y5=0
Yo—Y4+Ys=0

—Y3— Y, tbys2 0




Certificates Obtained by LP

maxyb: yI P(S), Sy, =1

T

Normaiization
tohavey ! O

Interior Solutions Certify All at Once with s(y)

y* 1 argmax{yb: yA=0, y3 0,S vy, =1}
P everyi for which y*. > 0isanimplied equality

y* interior P s(y) = set of all implied equalitiesof Ax3 b



