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• Constraints in biology
• Reconstructions and applying constraints
• Constraint-based modeling (CBM): 

philosophy and overview
• Basics of flux balance analysis (FBA)
• Lessons learned
• CBM: an expanding field
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Constraints in BiologyConstraints in Biology
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Constraints Govern Possible Biological Constraints Govern Possible Biological 
FunctionsFunctions

• Evolution: Organisms exist in resource-scarce 
environment
– The more “fit” organisms survive with a higher 

probability than the less “fit”
– Fitness requires satisfying a myriad of constraints

which limit the range of available phenotypes
• Survival thus depends on best utilization of 

resources to survive & grow, subject to constraints
• All expressed phenotypes must satisfy imposed 

constraints ! constraints therefore enable us to 
eliminate impossible cellular behaviors
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Evolution and governing constraints
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What kinds of constraints do cells What kinds of constraints do cells 
have to abide by?have to abide by?

• Physico-chemical constraints
– Conservation of mass, energy, & momentum
– Maximal reaction/transport rates
– Thermodynamic constraints

• Topobiological constraints
– Macromolecular crowding constrains possible 

interactions & diffusion of large molecules
– DNA, e.g., must be both tightly packed and yet easily 

accessible to the transcriptional machinery ! two 
competing needs constrain the physical arrangement of 
DNA within the cell
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What kinds of constraints do cells What kinds of constraints do cells 
have to abide by?have to abide by?

• Environmental constraints
– Condition-dependent ! variable constraints
– pH, temperature, osmolarity, availability of electron 

receptors, etc.
– Availability of carbon, oxygen, sulfur, nitrogen, and 

phosphate sources in surrounding media
• Regulatory constraints

– Self-imposed “restraints”
– Subject to evolutionary change
– Allow cells to eliminate suboptimal phenotypes and 

confine themselves to behaviors of increased fitness
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Network Reconstruction:Network Reconstruction:
The Key to Systems BiologyThe Key to Systems Biology
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Reconstructing NetworksReconstructing Networks
The challenge of integrating heterogeneous data types

TranscriptomicsGenomics

Proteomics Phenomics Metabolomics
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Network ReconstructionNetwork Reconstruction
Metabolic Regulatory Signaling

Integrated but incomplete
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ORGANISM

Genome 
Annotation

Genome Annotation
- by homology, location

Network Reconstruction
Inferred Reactions
- indirect, inferred from 

biomass requirements

Inferred 
Reactions

Metabolic Model

BiochemistryBiochemical Data
- protein characterized

Cell
Physiology

Physiological Data
- indirect, pathway known

New Predictions
Emergent Properties

Quantitative
Analytical
Methods

Quantitative Analysis
- simulate cell behavior 
- drive experimental studies

How are metabolic networks reconstructed?How are metabolic networks reconstructed?
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Model Development:
an iterative process

Computational,
Biochemical 
Investigation

- Biochemical data
- Revised ORF 
assignments

ORGANISM

Genome 
Annotation

Network Reconstruction

Inferred 
Reactions

Metabolic Model

Biochemistry
Cell

Physiology

New Predictions
Emergent Properties

Quantitative
Analytical
Methods

How are metabolic networks reconstructed?How are metabolic networks reconstructed?
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Genome sequence

Literature

Databases

Bottom-up

Promoter sequence

Gene expression

ChIP-Chip

Top-down

Reconstruction of Regulatory Networks

Herrgard et al, Curr Opin Biotechnol, 2004
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What is in a wholeWhat is in a whole--cell cell 
reconstruction?reconstruction?

Genome:
Annotated genes
Gene location
Regulatory regions
Wobble base pairs

Biochemistry:
Stereochemistry
pH and pKa (charge)
Elemental balance
Charge balance
Multiple reactions/enzyme
Multiple enzymes/reaction

Transcription/translation:
Gene to transcript to protein to 

reaction association
Transcript half-lives
tRNA abundances
Ribosomal capacities

Physiology:
Flux data
Knock-outs
Balanced functions
Overall phenotypic behavior
Location of gene product 

compartmentalization
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ConstraintConstraint--based Modeling:based Modeling:
Eliminating Impossible PhenotypesEliminating Impossible Phenotypes
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Criteria for Modern Biological Criteria for Modern Biological 
ModelsModels

1. Must be data-driven
2. Based on large organism-specific

databases (i.e. genome-scale)
3. Need to integrate diverse data types
4. Must be readily scalable to cell or 

genome-scale
5. Must account for inherent biological 

uncertainty
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Challenges of Building TheoryChallenges of Building Theory--based Models based Models 
for Intracellular Functions at Genomefor Intracellular Functions at Genome--scalescale

• Uncertain whether the physico-chemical laws 
apply
– Crowding, small number of molecules, diffusion 

limitations
• Impossible to get the numerical values for the 

thousands of physical constants
• Parameters vary with:

– Time (i.e. evolution)
– Between individuals (i.e. polymorphism)
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Functional states of networksFunctional states of networks
The constraint-based approach to 

analysis of complex biological systems
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ConstraintConstraint--based Analysisbased Analysis
How often have I said to you that 

when you have eliminated the 
impossible, whatever remains, 

however improbable, must be the 
truth?

–Sherlock Holmes, A Study in 
Scarlet

Fl
ux

 C

Flux B

Flux A

Unbounded
Solution Space

Fl
ux

 C

Flux B

Flux A

Constraints
(i)    Stoichiometric
(ii)   Thermodynamic
(iii)  Capacity

Bounded 
Convex Subset
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Factors Constraining Metabolic FunctionFactors Constraining Metabolic Function

• Connectivity: 
– Systemic stoichiometry
– Sv = 0

• Capacity: 
– Maximum fluxes
– vi < maximum value

• P/C factors: 
– osmotic pressure, electro-neutrality, solvent 

capacity, molecular diffusion
• Rates:

– Mass action, Enzyme kinetics, Regulation

[ ] ∑∑ −= consumeproduce
m VV

dt
Xd

vSX •=
dt
d
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Approach: Approach: 
application of successive constraintsapplication of successive constraints

1

Rn

Subspace of Rn

Convex cone
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convex subset

Union of
convex subsets
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M" kj

M

Capacity constraints vi # vi, Max

Reaction directions
and convex analysis vi $ 0

S • v = 0Stoichiometry and 
linear algebra
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Capacity constraints vi # vi, Max

Reaction directions
and convex analysis vi $ 0

S • v = 0Stoichiometry and 
linear algebra

Physico-Chemical and 
System-Specific Constraints:

• Connectivity: systemic 
stoichiometry

• Thermodynamics: directionality 
of the reactions

• Capacity: maximum flux rates

• Kinetics: time constants, mass 
action

• Genetic Regulation
Palsson, B.Ø., Nature 
Biotechnology, 2000 

Nov, 18(11):1147-50.

0≥iv

max,ii vv ≤

j
M

i
M kk <<



Systems Biology Research Group
http://systemsbiology.ucsd.edu

University of California, San Diego
Department of Bioengineering

Mathematical Representation of Mathematical Representation of 
ConstraintsConstraints

• Balances
– Mass
– Energy
– Solvent capacity

• Bounds
– Thermodynamics
– Enzyme/transporter capacity

• Non-linear P/C phenomena








++=

≤≤

∞≤≤

≤
=∆
=⋅

∑

%2

max

0

0

i
i

i

jjj

j

i
i

Bc
M
cRT

v
v

cc
E

π

βα

0vS



Systems Biology Research Group
http://systemsbiology.ucsd.edu

University of California, San Diego
Department of Bioengineering

Flux Balance Analysis (FBA):Flux Balance Analysis (FBA):
Interrogation of GenomeInterrogation of Genome--scale Network scale Network 

ReconstructionsReconstructions
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History of Flux Balance Analysis (1984History of Flux Balance Analysis (1984--2000)2000)

Edwards, J.S., et al. Environmental Microbiology (2002)

2001

Pramanik and  Keasling:
Growth rate dependence on biomass composition

Varma and Palsson (1993-1995): 
Studied metabolic characteristics and capabilities of E. coli

Savinell and Palsson:
Comprehensive assessment of FBA

Majewski and Domach:
Acetate overflow during aerobic growth

Fell and Small:
Used LP to study lipogenesis

Papoutsakis (1984) & Papoutsakis and Meyer (1985):
Used LP to calculate maximal theoretical yields

1984

1990

1986

1992

1993

1995

1997

1999

2000

Edwards and Palsson (1999-2000):
Gene deletion studies of E. coli.
Analysis of H. Influenzae metabolic system.
Phenotypic Phase Plane Analysis
Schilling, Edwards and Palsson:
Integrating Flux-Balance Analysis with Metabolic Pathway Analysis

Covert, Schilling and Palsson:
Incorporating regulatory constraints with flux-balance models

Burgard and Maranas:
Performance limits of E. coli subject to gene additions/deletions
Minimal reaction sets

2001

Pramanik and  Keasling:
Growth rate dependence on biomass composition

Varma and Palsson (1993-1995): 
Studied metabolic characteristics and capabilities of E. coli

Savinell and Palsson:
Comprehensive assessment of FBA

Majewski and Domach:
Acetate overflow during aerobic growth

Fell and Small:
Used LP to study lipogenesis

Papoutsakis (1984) & Papoutsakis and Meyer (1985):
Used LP to calculate maximal theoretical yields
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Edwards and Palsson (1999-2000):
Gene deletion studies of E. coli.
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Schilling, Edwards and Palsson:
Integrating Flux-Balance Analysis with Metabolic Pathway Analysis

Covert, Schilling and Palsson:
Incorporating regulatory constraints with flux-balance models

Burgard and Maranas:
Performance limits of E. coli subject to gene additions/deletions
Minimal reaction sets

Pramanik and  Keasling:
Growth rate dependence on biomass composition

Varma and Palsson (1993-1995): 
Studied metabolic characteristics and capabilities of E. coli

Savinell and Palsson:
Comprehensive assessment of FBA

Majewski and Domach:
Acetate overflow during aerobic growth

Fell and Small:
Used LP to study lipogenesis

Papoutsakis (1984) & Papoutsakis and Meyer (1985):
Used LP to calculate maximal theoretical yields
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Edwards and Palsson (1999-2000):
Gene deletion studies of E. coli.
Analysis of H. Influenzae metabolic system.
Phenotypic Phase Plane Analysis
Schilling, Edwards and Palsson:
Integrating Flux-Balance Analysis with Metabolic Pathway Analysis

Covert, Schilling and Palsson:
Incorporating regulatory constraints with flux-balance models

Burgard and Maranas:
Performance limits of E. coli subject to gene additions/deletions
Minimal reaction sets
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Linear Programming (LP):Linear Programming (LP): What is it?What is it?
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(optimal)
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Optimizing cellular growth  (=max likelihood of survival?)

Nucleosides

Heme

Pyrimidines

Lipids

Purines

Cell Wall

AminoAcids

Biology

Z = civi
i
∑ =c ⋅v

S ⋅ v =0
α j ≤ vj ≤ βj

Mathematics

Maximize

Subject to

Data-derived!
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pressure directing evolution
“optimal” state (e.g. growth)

di
re

ct
io

n 
of

 ‘b
et

te
r’

 su
rv

iv
al

allowable
functions

reduction in capability

Z = civi
i
∑ =c ⋅v

S ⋅v =0
α j ≤ vj ≤ βj
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How does LP work? How does LP work? 
A very simple exampleA very simple example

Bonarius,et al TIBTECH vol 15:308 (1997)

The solution space is the line of 
admissible in the positive orthant. 

If we  maximize ATP production the 
solution lies on the x-axis where all 
the flux would be through reaction 
x1.  Conversely, maximizing NADH 
production would give the point at 
the y-axis, where only reaction x2 is 
active.

Note that the optimal solutions lie at 
the boundary of the admissible space.

x1+x2= rA
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Types of objective functionsTypes of objective functions

• For basic exploration and probing of 
solution space

• To represent likely physiological 
objectives

• To represent bioengineering design 
objectives
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Questions that can be addressed using Questions that can be addressed using 
LP: calculating optimal phenotypesLP: calculating optimal phenotypes

Minimize:    ATP production
nutrient uptake
redox production

metabolite production
Maximize:   biomass production (i.e. growth)

the Euclidean norm of the flux vector
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Calculating Optimal States using LP:Calculating Optimal States using LP:
the objective function Zthe objective function Z

Minimize Z, where

Z = civi
i
∑ = c ⋅v

c is the vector that defines the weights 
for of each flux in the  objective 
function, Z.  The elements of c can be 
used to define a variety of metabolic 
objectives.
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Mathematical formulation of Mathematical formulation of 
objective functionsobjective functions

Minimize  Z =<c⋅v >= civi
i
∑

 v=

vG6P

vF6P

vATP

vNADH

 

 

 
 
 

 

 

 
 
 

      

Example:  Minimize ATP production

 c=

0
0
-1
0

 

 

 
 
 

 

 

 
 
 

     
Minimize Z
Z = 0 ⋅vG6P + 0⋅vF6P −1⋅vATP +0 ⋅vNADH
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The growth The growth 
requirementsrequirements

Metabolic demands of precursors 
and cofactors required for 1 g of 
biomass of E. coli.

These precursors are removed from 
the metabolic network in the 
corresponding ratios.

Thus, the objective function is:

Z =  41.2570 vATP - 3.547vNADH +  
18.225vNADPH +  ….

Metabolite Demand 
(mmol)

ATP 41.2570
NADH -3.5470
NADPH 18.2250
G6P 0.2050
F6P 0.0709
R5P 0.8977
E4P 0.3610
T3P 0.1290
3PG 1.4960
PEP 0.5191
PYR 2.8328
AcCoA 3.7478
OAA 1.7867
AKG 1.0789

Neidhardt,et al. Physiology of the 
Bacterial Cell (1990)
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Optimizing cellular growth  (=max likelihood of survival?)

Nucleosides

Heme

Pyrimidines

Lipids

Purines

CellWall

AminoAcids

Biology

Z = civi
i
∑ =c ⋅v

S ⋅v =0
α j ≤ vj ≤ βj

Mathematics

Maximize

Subject to



Systems Biology Research Group
http://systemsbiology.ucsd.edu

University of California, San Diego
Department of Bioengineering

Biomass compositionBiomass composition
Some issuesSome issues

• Will vary from one organism to the next
• Will vary from one growth condition to another
• The optimum does not change much with changes in 

composition of a class of macromolecules, i.e. amino acid 
composition of protein

• The optimum does change if the relative composition of 
the major macromolecules changes, i.e. more protein 
relative to nucleic acids
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The ConstraintsThe Constraints

S⋅v =0
Flux Balance Constraints

Capacity  Constraints
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0
All elementary reactions are irreversible, 
reversible reactions are defined as two separate 
strictly positive reactions
To constrain the upper and lower bound on specific 
fluxes.  Used to set the maximal uptake rate if specific 
measurements are not available.  i.e. maximal oxygen 
uptake
To set the flux level of a specific reaction.  This 
constraint is used for fluxes that have been 
experimentally determined - typically the uptake rate 
of the carbon source
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Determining constraintsDetermining constraints
• Experimental determination
• Estimation

Example: estimating oxygen uptake rates:

oxygen

Flux = kDC = (2D/d)Csat
If Sh =2 
Then the maximum oxygen uptake rate is
Nmax = 2 (2.1 X 10-5 cm2/sec)(0.21mM)/1mm

= 8 X 10-10M/cm2/sec
If the area per cell is 12 mm2 = 12 X 10-8 cm2

Nmax =10-16M/sec/cell
Since one cell is about 1 fg = 10-12 mg
Nmax = 100 mmol/cell/sec
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Flux Balancing: 
an example of model formulation
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Gene Enzyme Flux
Gene1 Enzyme1 R1

Gene2 Enzyme2 R2

Gene3 Enzyme3 R3

Gene4 Enzyme4 R4

Gene5 Enzyme5 R5

Gene6 Enzyme6 R6

Gene7 Enzyme7 R7

Gene8 Enzyme8 R8

Gene9 Enzyme9 R9

Gene10 Enzyme10 R10

GeneA A Transporter Aup

GeneD D Transporter Dup

GeneF F Transporter Fup

GeneH H Transporter Hup

Aexternal

B

2 C

D

E

F

G

H

Hexternal

Dexternal
Fexternal

Cell 
Membrane

System 
Boundary

Aup

Hup

Dup
Fup

II

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Vm B + 2H BiomassVgrowth

Example continued: the reconstructed network, 
its map and gene list
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The flux balance equation for example network
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H
F
D
A
I
H
G
F
E
D
C
B 0 ≤ R1 ≤ ∞

0 ≤ R2 ≤ ∞
0 ≤ R3 ≤ ∞
0 ≤ R4 ≤ ∞
0 ≤ R5 ≤ ∞
0 ≤ R6 ≤ ∞
0 ≤ R7 ≤ ∞
0 ≤ R8 ≤ ∞
0 ≤ R9 ≤ ∞
0 ≤ R10 ≤ ∞
Y1 ≤ Vm ≤ Y1

0 ≤ Vgrowth ≤ ∞

Y2 ≤ Aup ≤ Y2

−∞ ≤ Dup ≤ 0

−∞ ≤ Fup ≤ 0

−∞ ≤ Hup ≤ 0

Mass Balances Flux Constraints

Objective Function
Z=Vgrowth

Example 
continued:

The mass 
balances, the 
capacity 
constraints, and 
the objective 
function
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Illustrative example of basics of LPIllustrative example of basics of LP

Consider a system that has two metabolites A 
and B.

The production constraints on them are 
0 < A < 60, and 0 <B< 50

Additionally the capacity for producing them 
simultaneously is limited by:

A + 2B < 120
The objective function is

Z = 20A + 30 B
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LP LP && Graphical representation of Graphical representation of 
feasible setfeasible set

B

A

50

60

60 75

A+2B = 120

B= 50

A=60
Feasible set
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LP LP && Graphical representation of the objective Graphical representation of the objective 
functionfunction

B

A

50

60

60 75

Feasible set

Z = 2100

Z = 1900

Z = 1500

Optimal value within
feasible set Z = 20A+30B
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LP LP && Types of solutions:Types of solutions:
feasible and nonfeasible and non--feasible solutionsfeasible solutions

Feasible: solutions 
possible within all 
stated constrains

Not feasible: 
solutions not 
possible within all 
stated constrains
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LP LP && Types of solutions:Types of solutions:
the impact of the objective functionthe impact of the objective function

Optimal 
solution in a 
corner

Optimal solution 
along an edge

Optimal 
solution not 
found--region 
unbounded

Single solution Degenerate 
solution

No solution

Lines of constant Z
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Next Lecture…
• Lessons learned from genome-scale constraint-based models
• The future of constraint-based modeling and associated 

techniques


