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Constraints in Biology
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Constraints Govern Possible Biological
Functions

e Evolution: Organisms exist in resource-scarce
environment

— The more “fit” organisms survive with a higher
probability than the less “fit”

— Fitness requires satisfying a myriad of constraints
which limit the range of available phenotypes
 Survival thus depends on best utilization of
resources to survive & grow, subject to constraints

» All expressed phenotypes must satisfy imposed
constraints = constraints therefore enable us to
eliminate impossible cellular behaviors
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Evolution and governing constraints

_optimal” state

/ épressure directing evolution
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What kinds of constraints do cells
have to abide by?

e Physico-chemical constraints
— Conservation of mass, energy, & momentum
— Maximal reaction/transport rates
— Thermodynamic constraints

e Topobiological constraints

— Macromolecular crowding constrains possible
Interactions & diffusion of large molecules

— DNA, e.g., must be both tightly packed and yet easily
accessible to the transcriptional machinery - two
competing needs constrain the physical arrangement of
DNA within the cell
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What kinds of constraints do cells
have to abide by?

e Environmental constraints
— Condition-dependent = variable constraints

— pH, temperature, osmolarity, availability of electron
receptors, etc.

— Avallability of carbon, oxygen, sulfur, nitrogen, and

phosphate sources in surrounding media

e Regulatory constraints
— Self-imposed “restraints’
— Subject to evolutionary change

— Allow céllsto eliminate suboptimal phenotypes and
confine themseal ves to behaviors of increased fithess
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Network Reconstruction:

The Key to Systems Biology
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Reconstructing Networks
The challenge of integrating heterogeneous data types
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Network Reconstruction

Metabolic Regulatory

EEELITAT B
LI FLAY &
BiRlladka m
I HEFTS ]

. HELlE4Y & s
zlzraym 32
nEliTare
ELETTAAE M
EiRl3agT B

T, HEEIIEETE &

4 EERTINAN BN,
FIRIITEAT B
EEEIIWAT ®2
EEEldwhi Wl

s EEELd J-J‘-i"ﬁ-l-.
* EIITTAN EE
Hitivadn
ELRIvAR E
tiErTaAE N EE

s = Fioifgzamm B

. EEIIATAE;

OHSldsETW R
tiflidima §1
iRt dan & B
Hitliaa £

AHFESET £+
FEQES &y s 2
r

HERE IR i B R R

ARF S P R TI R T r

1.4

pIibriTitass

University of California, San Diego Integrated but incomplete Systems Biology Resear ch Group
Department of Bioengineering http://systemsbiology.ucsd.edu




Amims Aold Srisbolios = - v

Tuiar il F e Sle] Cinleli

- N B
v ) ik .
| [P e
= e .
- - Zrimmte | eDy 4 S ' Fa
" ! W .
4 e =
d —t ey 'y
4 - . % 0 -
T oy
r . F
m o 4
s ¥ 5
FE 3
by - Dl Arw . : TS T
. " L =
' e = . J o
F ™ i = . gl
: % [
' @ = i
" - ot g TN ,
a . - : & - L L& . . a.
; b 4 e p— e l - A
- P % * .
: ; .o =0
- . k
I Hew iy - T e
. |
: - gt T
i o e L sl - = L -
I L L o Py
. The o LR i 1
L 3 -— et .
- e - -
iy wE . " 5 i ok >
'
W
¥
.- s 2
- ®
il - ¥ L] . -
' Central Meisbolizm w b oo I
s ol RS —, |
T s ey e — i s Limm mar
ooy @t Vi gren Peouymhana
e - — Lt 4
. "'-.I -
=4
= - :
[} ] -
+ * . . il
5 b -
1 t1n Fd - -
> Ty o i
N =
] LR L
% = -
. b
s it
s 1m o .
=
oy b = o 3 - St B Nl L PR S e —
L # 85 ey e Ll cdmem
L .t i
:
i d
. ' "
- Sy —— C &
-y [ —— L £ x
. 2 X e 5
ey ] - A ] ]
L ' i . : ;
| = -
H e i . - - -
b - T - e e ) '
I Ir L= ! 2
2 -
e - i ==t 4
e 1 & Lo
" s ':J -
L S & =
[ — ] Li

University of California, San Diego Systems Biology Research Group

Department of Bioengineering http://systemsbiology.ucsd.edu




How are metabolic networks reconstructed?

Genome Annotation
- by homology, location

Biochemical Data Genome . Cell
- protein characterized Annotation y
Physiological Data i
- indirect, pathway known . 4 : : Inferred

) G \ T Reactions
|nferred Reactions

- indirect, inferred from
biomass requirements

Quantitative Analys

Physiology

- simulate cell behavior
- drive experimental studies

University of California, San Diego

stems Biology Resear ch Group
Department of Bioengineering

http://systemsbiol ogy.ucsd.edu




How are metabolic networks reconstructed?

Model Development:
an iterative process

Genome B L Cell
- Biochemical data Annotation

- Revised ORF o g :
assignments _. e N Inferred

“Biochemistry Physiology

Reactions

Computatio
Biochemical
Investigation
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Reconstruction of Regulatory Networks

Genome sequence : : — Promoter sequence
1 1 ' Rpnd
Gend
HSE
Migl
Chl
RIS genes
Hap2,34

Gene expression

[Shl

Bottom-up -

e
'l "5'-.,\_
=

v "

CIME RESTOTNY 7
Sl B ALV

ChIP-Chip

I

] 1"1'\.-\.'.'. .I -i:ln'l--'hl' S5 L, .|'|[

gy
" 41:‘_;1_1__._-}._.&\ -Tl _.l.,-..i.-..-f\_ﬂ:-r,-ui?n

T I'I::'.t.rr-:i-ﬂ.-h-'.Il-'-'l-...ﬂ‘.'E...Ttnl'.n.'.r

Herrgard et al, Curr Opin Biotechnol, 2004
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What i1s1n awhole-call
reconstruction?

Genome: Transcription/tranglation:

Annotated genes Gene to transcript to protein to
Gene location reaction association

Regulatory regi9n3 Transcript half-lives
Wobble base pairs tRNA abundances

Biochemistry: Ribosomal capacities
Stereochemistry EEiclogs
pH and pKa (charge) '

Elemental balance Flux data
Charge balance Knock-outs
Multiple reactions/enzyme Balanced functions
Multiple enzymes/reaction Overall phenotypic behavior
L ocation of gene product
compartmentalization
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Constraint-based Modeling:

Eliminating | mpossible Phenotypes
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Criteriafor Modern Biological
Models

Must be data-driven
Based on |arge organism-specific
databases (I.e. genome-scale)

Need to integrate diverse data types

Must be readily scalable to cell or
genome-scale

Must account for inherent biological
uncertainty
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Challenges of Building Theory-based Models
for Intracellular Functions at Genome-scale

» Uncertain whether the physico-chemical laws
apply

— Crowding, small number of molecules, diffusion
limitations

* |mpossible to get the numerical valuesfor the
thousands of physical constants
e Parameters vary with:

— Time (i.e. evolution)
— Between individuals (i.e. polymorphism)

University of California, San Diego Systems Biology Research Group
Department of Bioengineering http://systemsbiology.ucsd.edu




Functional states of networks

The constraint-based approach to
analysis of complex biological systems
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Constraint-based Analysis

How often have | said to you that
when you have eliminated the
Impossible, whatever remains,

however improbable, must be the

truth?

—Sherlock Holmes, A Study in
Scarl et

A

Constraints
(i) Stoichiometric
(i) Thermodynamic
(iii) Capacity

Conyek Subset

Unbounded
Solution Space

>
Flux g

N
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Factors Constraining M etabolic Function

Connectivity:

— Systemic stoichiometry . ._\ H

- Sv=0 3 @ H Q\
Capacity: 9
— Maximum

— Vi < maximum
P/C factors:

— 0sMmotic pressure, elettro- neutrality solvent
capacity, molecul Q[X:Iﬂ‘ﬂf

Rates:
— Mass action, Enzyme ki i es;Regulation
at
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Approach:
application of successive constraints

Physico-Chemical and
System-Specific Constraints:

e Connectivity: systemic
stoichiometry

* Thermodynamics:. directionality
of the reactions

e Capacity: maximum flux rates

e Kinetics: time constants, mass
action

» Genetic Regulation

Palsson, B.@., Nature
Biotechnology, 2000
Nov, 18(11):1147-50.
University of California, San Diego
Department of Bioengineering
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Union of
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Stoichiometry and
linear algebra

Reaction directions
and convex analysis

Capacity constraints Vi < Vi max

Relative saturation levels kll\/l << kl\J/I
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Mathematical Representation of
Constraints

e Balances
— Mass
— Energy
— Solvent capacity
* Bounds
— Thermodynamics
— Enzyme/transporter capacity }

* Non-linear P/C phenomena -
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Flux Balance Analysis (FBA):

Interrogation of Genome-scale Network

Reconstructions
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History of Flux Balance Analysis (1984-2000)

Papoutsakis (1984) & Papoutsakis and Meyer (1985):
Used LP to calculate maximal theoretical yields

Fell and Small:

Used L P to study lipogenesis

Majewski and Domach:

Acetate overflow during aerobic growth

Savinell and Palsson:

Comprehensive assessment of FBA

Varma and Palsson (1993-1995):
Studied metabolic characteristics and capabilities of E. coli

Pramanik and Keadling:
Growth rate dependence on biomass composition

Edwards and Palsson (1999-2000):

Gene deletion studies of E. coli.

Analysis of H. Influenzae metabolic system.

Phenotypic Phase Plane Analysis

Schilling, Edwards and Pal sson:

Integrating Flux-Balance Analysis with Metabolic Pathway Analysis
Burgard and Maranas:

Performance limits of E. coli subject to gene additions/deletions
Minimal reaction sets

Covert, Schilling and Palsson:
Incorporating regulatory constraints with flux-balance models

: _ : _ _ Edwards, J.S,, et a. Environmental Microbiology (2002) _
University of California, San Diego Systems Biology Research Group
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Linear Programming (LP): What 1S 1t?
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Optimizing cellular growth (=max likelihood of survival?)

M athematics
Convex cone

Maximize

; \L | Z= iqui =clv

Subject to

Bounded SV =0
convex subset a <v. <f

Data-derived!
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“optimal” state (e.g. growth)
pressure directing evol U'[ipﬂé 2=Yov =c
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How does L P work?
A very simple example

The solution space is the line of
admissible in the positive orthant.
X1tXo= 1Ty

If we maximize ATP production the o

. . : Admissible
solution lies on the x-axis where Al \. _— solutions
the flux would be through reaction
X,. Conversaly, maximizing NADH
production would give the point at
the y-axis, where only reaction X, IS
active.

Objective function: Objective function:

: : - Maximize NADH Maximize ATP
Note that the optimal solutionslie at st Canitisinte

the boundary of the admissible space. X;20,x,20 X;=0,%,=0
Bonarius,et a TIBTECH vol 15:308 (1997)
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Types of objective functions

 For basic exploration and probing of
solution space

e Torepresent likely physiological
objectives

e To represent bioengineering design
objectives
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Questions that can be addressed using
L P: calculating optimal phenotypes

Minimize: ATP production
nutrient uptake

redox production
the Euclidean norm of the flux vector

Maximize: biomass production (i.e. growth)
metabolite production
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Calculating Optimal States using L P
the objective function Z

Minimize Z, where
Z=)cv,=cly

c isthe vector that defines the weights
for of each flux in the objective
function, Z. The elements of ¢ can be
used to define a variety of metabolic
obj ectives.
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Mathematical formulation of
obj ective functions

MinimizeZ =<c¥ >=) qv

Example: Minimize ATP production

Minimize Z
=P Z=00gp + OVpgp — 10 + 00,y
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The growth
. Metabolite Demand
requirements (mmol)

ATP 41.2570

M etabolic demands of precursors NADH -3.5470
NADPH 18.2250

and cofactorsrequired for 1 g of G6P 0.2050
biomass of E. coli. F6P 0.0709

R5P 0.8977
These precursorsareremoved from E4P 0.3610

the metabolic network in the T3P 0.1290

: ; 1.4
corresponding ratios. ng, s 5?82

PYR 2.8328
AcCoA 3.7478

Z=  41.2570 Vppp- 3547V yapp + OAA 1.7867

AKG 1.0789
18-225VNADPH + (R
Neldhardt,et al. Physiology of the

Bacterial Cell (1990)
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Thus, the objective function is;




Optimizing cellular growth (=max likelihood of survival?)

Biology M athematics

Maximize

Z=)cv. =cll

Subject to
Sy =0
a, sV, <f

7 e
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Biomass composition
Some Issues

Will vary from one organism to the next
Will vary from one growth condition to another

The optimum does not change much with changesin
composition of a class of macromolecules, i.e. amino acid
composition of protein

The optimum does change if the relative composition of
the ma or macromolecules changes, i.e. more protein
relative to nucleic acids
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The Constraints

Flux Balance Constraints

Capacity Constraints

vV, —Av, v, <V, + Ay,

University of California, San Diego
Department of Bioengineering

All elementary reactions are irreversible,

reversible reactions are defined as two separate
strictly positive reactions

To constrain the upper and lower bound on specific
fluxes. Used to set the maximal uptake rate if specific
measurements are not available. i.e. maximal oxygen
uptake

To set the flux level of aspecific reaction. This
constraint is used for fluxes that have been
experimentally determined - typically the uptake rate
of the carbon source

Systems Biology Research Group
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Determining constraints

e Experimental determination
 Estimation

Example: estimating oxygen uptake rates.

Flux = kDC = (2D/d)C
If Sh=2

Then the maximum oxygen uptake rateis

\ =2 (2.1 X 10> cm?/sec)(0.21mM)/1mm
= 8 X 101%M/cm?/sec

If the area per cell is12 mm? =12 X 108 cm?
N, =101%M/sec/cdll

Sinceone cell isabout 1 fg=1012mg

\ = 100 mmol/cdl/sec

max

max
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Flux Balancing:
an example of model formulation
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Example continued: the reconstructed network,
Its map and gene list
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M ass Balances Flux Constraints
O<R <

: OSRZSoo
Example - o <
. : O<R/sw
continued: ; s .=
: O;&;m
OsR; <

The mass : _ 0<R <o
balances, the U Ry 52

YV, <Y,

capacity : 0V, < 0
constraints, and : V<A<,

—0o<D, <0

the objective | —w<F. <0

up —

function : e <H,, <0

Objective Function
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[llustrative example of basics of LP

Consider a system that has two metabolites A
and B.

The production constraints on them are
0<A <60, and 0 <B< 50
Additionally the capacity for producing them
simultaneously s limited by:
A +2B <120
The objective function is
/=20A+30B
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LP =>» Graphical representation of
feasible set

A

60 \

T

—

B A
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LP =» Graphical representation of the objective
function

Z = 20A+30B

—

B A
University of California, San Diego Systems Biology Research Group
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LP =>» Types of solutions.
feasi ble and non-feasible solutions

>

Feasible: solutions Not feasible:
possible within all solutions not

stated constrains possible within all
stated constrains

Systems Biology Research Group

University of California, San Diego
http://systemsbiol ogy.ucsd.edu
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LP =>» Types of solutions.
the Impact of the objective function

Single solution Degenerate No solution

solution
A

>
Optimal Optimal solution
solutionin a along an edge solution not
found--region

Lines of constant Z unbounded
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Next Lecture...

» Lessonslearned from genome-scale constraint-based models

» The future of constraint-based modeling and associated
techniques
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