Constraint-based Modeling: Part II LP, Lessons Learned, and the Growing Field of CBM

> Tuesday, May 4, 2004 Timothy E. Allen / Bernhard Ø. Palsson BE 203 Lecture

University of California, San Diego Department of Bioengineering

# Outline

- Constraints in biology
- Reconstructions and applying constraints
- Constraint-based modeling (CBM): philosophy and overview
- Basics of flux balance analysis (FBA)
- Lessons learned
- CBM: an expanding field

### Lessons Learned: Applications to Genome-scale in silico Reconstructions

University of California, San Diego Department of Bioengineering

Lessons Learned: Applications to Genome-scale in silico Reconstructions

- 1. Deletion studies (*H. influenzae*)
- 2. Essential amino acids (H. pylori)
- 3. Reaction subsets / operons (E. coli)
- 4. Gap analysis (E. coli)
- Optimal growth predictions / adaptive evolution
  (*E. coli*)
- 6. Iterative hypothesis generation (*E. coli*)
- 7. Integration of heterogeneous datasets (E. coli)

### Example #1: Gene Deletions & Production Deficiencies <u>H. Influenzae Central Metabolism</u>

**50 Biomass Requirements** 



University of California, San Diego Department of Bioengineering

### Example #2: H. Pylori Minimal Requirements



• 8 amino acids required

- purine sources Adenine Adenosine Guanine Guanosine **Hypoxanthine**
- sulfur source Cysteine Sulphate

 oxygen no substrate level phosphorylation (lacks PYK)

#### glutamate

Requires alanine or arginine, only component not dependent on one substrate

# Example #3: Reaction Subsets (E. coli)



University of California, San Diego Department of Bioengineering

### Correlated Sets / Operons (E. coli)



### Correlation of Genes in Correlated Sets and Operons Using Expression Data for *E. coli*

University of California, San Diego Department of Bioengineering

# Example #4: Network Gap Analysis



University of California, San Diego Department of Bioengineering



## Models can be used to guide biological discovery.

# **55** Putative Annotations

| Bnum  | EC number             | Published Annotation [Serres et al.]                       | Suggested Annotation                                        |         |
|-------|-----------------------|------------------------------------------------------------|-------------------------------------------------------------|---------|
| b3718 | 3.1.1.17              | putative isomerase                                         | gluconolactonase                                            | Enzyme  |
| b2160 | 2.7.1.13              | putative sugar kinase                                      | dehydrogluconokinase                                        | network |
| b2166 | 2.7.1.14              | putative sugar kinase                                      | sedoheptulokinase                                           | J       |
| b2661 | 1.2.1.19;<br>1.2.1.24 | succinate-semialdehyde dehydrogenase I ,<br>NADP-dependent | aminobutyraldehyde dehydrogenase;<br>succinate-semialdehyde | Sugg    |
| b4266 | 1.1.1.6               | 5-keto-D-gluconate-5-reductase                             | glycerol dehydrogenase.                                     | ed and  |
| b3003 | 1.1.1.6               | putative oxidoreductase, NAD(P)-binding                    | glycerol dehydrogenase.                                     | targe   |
| b2137 | 1.1.1.5               | putative oxidoreductase                                    | acetoin dehydrogenase, Diacetyl reductase                   | Enzyme  |
| b2615 | 2.7.1.23              | ORF                                                        | NAD+ kinase                                                 | assignm |
| b3718 | 3.1.1.31              | putative isomerase                                         | 6-phosphogluconolactonase (Pgl)                             |         |
| b1511 | 2.7.1.47              | putative sugar kinase (2nd module)                         | D-ribulokinase                                              |         |
| b1524 | 3.5.1.2               | putative glutaminase                                       | glutaminase A,B                                             |         |

Enzymes acting on network gaps

Suggest alternate substrates for Anytipes hits for target enzymes Enzymes in *E. coli* without locus assignments (EcoCyc)

Metabolic model makes growth predictions for knock-out strains (86%). Regulated metabolic model increases accuracy of predictions (91.4%).

University of California, San Diego Department of Bioengineering

Example #5: Predicting complex biology; adaptive evolution and picking optimal growth states

Sub-optimal Growth Rate (1/hr) 1.2 LO 0.8 0.4 Oxygen Uptake Rate **Glycerol Uptake Ra** Growth Rate (1/hr) Optimal 1.2 0.8 0.4 20 16 12 4 0 0 Oxygen Uptake Rate **Glycerol Uptake Rate** (mmole/g-DW/hr) (mmole/g-DW/hr)

> Systems Biology Research Group http://systemsbiology.ucsd.edu

University of California, San Diego Department of Bioengineering

# Using Adaptive Evolution



### **Evolving Growth Rate on Glycerol**



University of California, San Diego Department of Bioengineering

Ibarra et al, Nature 420: 186-189 (2002)







Fructose 1,6 bisphosphate (FBP) binding site on glpK FBP binding loop (230-236) : IGGKGGTR Mutation in FBP binding site (ggc→gac) ggc wt SEVYGQTNIG GKGGTRIPIS gac mut SEVYGQTNID GKGGTRIPIS



2-3 fold decrease in inhibition by 2mM FBP on activity of *glpK* with mutation



~ 10 fold increase in activity of glpKwith mutation (G231D: GLY  $\rightarrow$  ASP)





University of California, San Diego Department of Bioengineering

Example #6: Hypothesis generation: transcriptional regulation in E. coli



Systems Biology Research Group http://systemsbiology.ucsd.edu

University of California, San Diego Department of Bioengineering

### Model-Centric Hypothesis Generation

- Genome-scale regulatory/metabolic model of *E. coli* 
  - 1,008 genes
- Systematic network perturbation analysis
  - ArcA, Fnr, ArcA/Fnr, AppY, OxyR, SoxS
- Generate new rules for model
- Hypotheses generation



## Model-driven hypothesis generation Prediction & Data Generation

#### **Gene Expression Study**

- Added new rules for 78 genes
- Removed old rules for 27 genes
- Changed old rules for 10 genes
- Total of 115 changes in regulatory rules

Step two: Compare new observations to computa-tional predictions

*i*MC1010<sup>v2</sup>

• Phenotypic Predictions

• Expression Predictions

#### *i*MC1010<sup>v1</sup>

- Phenotypic Predictions <u>-79</u>% (10828/13750) accuracy
- *Expression Predictions* - 49% (23/47) accuracy

-15% (23/151) coverage

Step one: Reconstruct computational model based on available data

### 110 new regulatory hypotheses overall



### Step three: Expand model via **hypothesis generation**

-98% (100/102) accuracy -66% (100/151) coverage

-79% (10833/13750) accuracy

University of California, San Diego Department of Bioengineering

Covert et al, Nature (in press) 2004

Systems Biology Research Group http://systemsbiology.ucsd.edu

Interpretation

# Example #7: Integration of multiple data sets: periodicity in gene expression

University of California, San Diego Department of Bioengineering



lesearch Group biology.ucsd.edu

# Integrating "Omics" Data



 $\mathbf{q} = (q_1 \dots q_{4290})$  constitutes the "transcription state" of the genome

 $\mathbf{t} = (t_1 \dots t_{4290})$  can be calculated on a per codon basis and account for relative tRNA abundance to give the state of the proteome University of California, San Diego Systems Biology Research Grand State Sta

University of California, San Diego Department of Bioengineering

# Periodicity in genome usage

- Periodicity in *E. coli* expression of ~100 and ~600 genes
- Appear to be distinct 6 regions of genome usage





# Topobiology of E. coli Genome



А в 300 nm С 100 nm

Department of Bioengineering

C. Woldringh, 2001

# Integration of "Omics" Data

- Simultaneous analysis of multiple "-omics" data sets leads to new insights
- Topobiology at the ~200 nm scale seems to be important
- Means of accounting for 3D structural constraints is needed in whole-cell reconstructions going forward

### Constraint-based Modeling: An Expanding Field

University of California, San Diego Department of Bioengineering

### Development of the E. coli Model



"Thirteen years of constraint-based model building of E. coll" J Bacti, May 2003

University of California, San Diego Department of Bioengineering

# (Several slides deleted due to copyright issues...)

University of California, San Diego Department of Bioengineering

### Systems Biology Research Group Principal Investigator: Bernhard Ø. Palsson, Ph.D.



University of California, San Diego Department of Bioengineering