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Background

What is an interior solution?

argmax{zs: 0 < 21,72 < 1} T2 Optimality
L region
={(£1):0<¢(<1}

Extreme points: {(0,1),(1,1)}

Relative interior:

{{¢;1): 0 <1}

T

If you don’t know where you're going, you’ll probably end up somewhere else.
—- Casey Stengel



Strict Complementarity

Primal Dual
mincr: £>0,Az > b maxwh: T>0,rA<e¢
s=Az-b(>0) d=c—7mA(>0)

For z feasible in primal and r feasible in dual,
Duality gap =cx —wb=dz + ms > 0.
(z, ) optimal & Duality gap = 0 & complementary:
z2; >0=2d;=0; d; >0=z; =0
8 >0=2m=0; m>0=>8=0.
Could have z; = d; = 0 and/or s; = m; = 0 for any complementary pair.

Strictly complementary:
Z;j =0=>dj > 0; dj =0=>z; > 0;

si=0=2m>0 m=0=s >0.

Logic is the art of going wrong with confidence.
— Joseph Wood Krutch



Example Revisited

argmax{zs : z1,22 >0 argmin{m + mo :m,me >0
z1, 3 < 1} m > 1}
={(¢,1) :0<¢<1} = {(0,1)}

(Dual solution is unique)

e f]-()-1)

d=c—mA=(0,1)— (0, 1)I = (0, 0).

Complementary Pairs

rld slm
ry dy|xy do| s M |s2 My

¢ 0[1 0|1-¢C 0]0 1

Strictly complementary < 0 < ¢ < 1.

Fconomic Theory: A systematic application and critical evaluation of the
basic analytic concepts of economic theory, with an emphasis on money and
why it’s good.

— Woody Allen



Support Sets

Support set = coordinates for which value is positive:

o(z) = {j: z; >0}, o(s) = {i: s; >0}
a(d) = {j: d; >0}, o(r) = {i: m >0}

Complementary: o(z) Ne(d) = 0§ o(s)Ne(r) = 0.

< Exclusive

Strictly complementary: o(z)Uo(d) = {1,...,n}; o(s)Ua(r) ={1,...,m}.
& + Exhaustive

LA strictly complementary solution induces a partition.

Key Fact
© Every LP that has an optimal solution has a strictly complementary

solution, and the partition induced by every strictly complementary
solution is the same [Goldman and Tucker, 1956).

We thus refer to the optimal partition of the (primal-dual) LP,

which is obtained by any strictly complementary solution.

Same example: For any strictly complementary solution,
o@)={L2}  ofs)={1}
o(d) =10 o(r) = {2}

If I had enough time, I could write less.
— B. Pascal



Facts About the (Unique) Optimal Partition

e Typical interior point methods (viz., central path following) converge
to a strictly complementary solution [Adler and Monteiro, 1989, -92;
Giiler, Roos, Terlaky and Vial, 1992; Jansen, Roos and Terlaky, 1992].

e A basic optimal solution is strictly complementary with its associated
(optimal) dual prices if, and only if, it is the only optimal solution
(for both primal and dual) [Greenberg, 1986].

Caution: There can be only one basic optimum, but still be alternative optima.
Example:

Primal Dual

minfz: z>0,z;—23>1 maxw: 72 0,m<0.

Strictly complementary solution: z° = (3,1),d’ = (0,0),s°=1,2% = 0.
Basic optimal solution: 2! = (1,0),d' = (0,0),s' = 0,7 = 0.

&

| X

If optimality region (both primal and dual) is bounded:

unique optimum < unique optimal basis < strictly complementary.

The search for truth is more precious than its possession.

— Albert Einstein



An Example of Rim Ranges

3 x 3 transportation problem:

min Z(‘.‘ijﬂ:{j: il ﬁ, ZI;‘;‘ < GE,ZJ}{J‘ = bj.
j

L]

i]
Current values: ¢;; = 1Vi,j; a = (2,6,5); b= (3,3, 3).

Primal Solution Dual Solution
System Tiy Ti2 Tia T2 Ty Ty Ty T3z Taz M M2 M3 My Wy We
CPLEX o 2 0 2 1 3 1 0 00 0 0O 1 1 1
LINDO 2 0 0 0 0 2 1 3 110 0 0 1 1 1
PC-PROG| 0 0 0 O 3 1 3 0 210 0 0 1 1 1
XMP o 0 2 3 3 o0 O O 1]|¢6 0 0 1 1 1
RHS Ranges
System a4 asq a3 by bo by
CPLEX [0,3] [4,7] [1,00) [2,7] [2,5] [2,5]
LINDO [1,3] [2,00) [4,7] [2,4] [1,4] [1,7]
PC-PROG | [0,00) [4,00) [3,6] [2,5] [0,5] [2,5]
XMP [0,3] [6,7] [l,00) [2,3] [2,3] [2,7]
Cost Ranges
System c11 C12 €13 €21 Co2 €3 Cu Caz C33

CPLEX [1,00) (—o0,1] [l,00) [1,1] [1,1] [0,1] [1,1] [1,00) [1,00)
LINDO (=o0,1] [1,00) [l,00) [l,00) [l,0¢) [1,1] [1,1] [0,1] [1,1]
PC-PROG | [1,e0) [l,o0) [1,00) [l,00) [0,1] ([1,1] [0,1] [1,00) [1,1]
XMP [1,e0) [l,00) (—o0,1] [0,1] [0,1] [1,1] [1,00) [l,00) [1,]]

Reference:

B. Jansen, C. Roos and T. Terlaky. An Interior Point Approach to Postop-
timal and Parametric Analysis in Linear Programming, Technical Report,
Faculty of Technical Mathematics and Informaties/Computer Science, Delft
University of Technology, Delft, The Netherlands, 1992.



Ranges from the Interior Method

RHS Ranges
ay ag ag by by bs
Min 0 2 1 0 0 O
Current 2 6 5 3 3 3

Max oo o oo 7T T T

Cost Ranges
Cin  Ci2 Ci3 C21 Cz2 C23 C31 C3z Ca3
Min - - -0 0 0 0 0 0 0
Current 1 1 1 1. 1 3+ 3 1 1

Max 00 00 00 00 00 00 00 00 00

e These ranges are unique.
e = Break points: objective value changes form.

e = where the optimal partition must change.

FEven if you’re on the right track, you’'ll get run over if you just sit there.
— Will Rogers



Meaning of the Optimal Partition Support Sets

o(z) = {j:
{s:
E
old) = {s:

: zj = 0 in every optimal solution}
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z; > 0 in some optimal solution}
d; = 0 in every optimal solution}
zj > 0 in some optimal basis (must contain z;)}
d; > 0 in some optimal solution}

: dj > 0 in some optimal basis (must not contain z;)}
i+ 8; > 0 in some optimal solution}

. mi = 0 in every optimal solution}

i 8; > 0 in some optimal basis (must contain s;)}

j: m; > 0 in some optimal solution}

: 8; = 0 in every optimal solution}

: m; > 0 in some optimal basis (must not contain s;)}

Last relation in each case is equality if the optimality region is bounded.

What matters and corresponds to “verifiable” fact is structure and relationship.

— Richard Courant and Harold Robbins



Example — Vary c

crange ofz) o(d) ol(s) o(m)

0 0 {1,2} {1,2,3} @

0—1 {2} {1} {1,2,3} 0

1 {2} {1} {23} {1}

1-2 {1,2} 0 {23} {1}

2 {1,2} 0 {3y 1{1,2}

2-3 {1,2} 0 {13} {2}

{1,2} 0 {1} {23}

3—4 {1,2} @ {1,2} {3}

4 {1} {2} {n2} {3}

§-0 {13 Oy 134 @




Need for the Optimal Partition

... When we need (or want) to know whether a variable is positive
in some optimal solution.
Example 1: Job Scheduling (Critical Path Problem)
Example 2: Peer Group Identification
Example 3: Finding all Implied Equalities
Example 4: Diagnosing Infeasibility with IIS Isolations
Example 5: Assignment Problem
Example 6: Absolute Value Targets
Example 7: Multiple Objectives

There is nothing more practical than a good theory.
— Harvey M. Wagner
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Example 1: Job Scheduling (Critical Path Problem)

Given: n jobs with durations to perform tasks, {t;}; precedence relations,
P = {< i,j >}, where job i must finish before job j can start.
Find: Start times of jobs to minimize total completion time, T
LP: z; = start time of job j; add jobs 0 and n + 1 with tg = t,4+1 =0;
add < 0,7 >,<j,n+1>to PVj.
minT = Zp41 — To: o5 — i > L for <4,5 >€E P,

Dual: max Z{u}ep myti: ™2 0,
-1 if k=0,
> cik>eP Tik = Dockj>ep Thi = 1 ifk=n+1,
0if1<k<n

& Longest Path Problem (each longest path = eritical path.

Given a basic optimal solution, we can say the following:
e Critical jobs are identified by the (one) critical path.

e Reducing completion time of some critical job is necessary, but not
sufficient, to reduce the total completion time.

Given an interior optimal solution, we can say the following:
e Critical jobs are identified as one that is in some critical path.
e Reducing completion time of some critical job is necessary, but not

sufficient, to reduce the total completion time (just as in a basic opti-
mum).

e Unlike a basic optimum, we have a sufficient condition to reduce total
completion time: reduce the completion times of all critical jobs.

Information from interior solution dominates information from basic solution.




Example 2: Peer Group Identification in Data Envelope Analysis

Given: n hospitals, each with m factor values.
Find: how well a particular hospital (k-th) is doing, relative to the others,
and the associated peer group with which the comparison is made.
LP: mincz: x> 0, Ej-mj =1, Ej Aijzi > A for i € G,
Zj Ai_._.'Ij < A for i € L.

A;; = value of i-th factor in hospital j;

G = performance (e.g., number of ER visits);

L = resources (e.g., number of beds).

Number of beds

k-th point in factor space

Number of ER visits

e r determines a point in the convex hull of the factors of the hospitals.
e Factor constraints in L ensure k-th hospital has at least as many
resources.
® Factor constraints in G ensure k-th hospital provides at least the same
quantity and quality of health care.
e Objective is usually cost.
Reference:
R.C. Morey, D.J. Fine, SSW. Loree, D.L. Retzlaff-Roberts, and S. Tsubaki-

tani, 1992. The Trade-off Between Hospital Cost and Quality of Care: An
Exploratory Empirical Analysis, Medical Care 30:8, 677-698.

Peer group of the k-th hospital = o(z*).

e Non-unique basic solution can give misleading evaluation.
e Unique partition better fits the meaning of a peer group.



Example 3: Finding All Implied Equalities

Given: S = {Az > b}.
Find: {i: Az > b= Aiz = b;}.
LP: max wb: 7A=0,7 > 0.

Some Facts
o LP unbounded = S has no feasible solution.

e If #*b =0, S is feasible and ¢ € o(m*) = A;z > b; is an implied equality.

Suppose S has a feasible solution. Then, o(7*) contains all implied
equalities if the LP solution is strictly complementary.

e o(n*) from a degenerate basic solution = must solve more LPs.

e o(n*) from an interior solution => done after one LP!

Reference:

R.M. Freund, R. Roundy and M.J. Todd, 1985. Identifying the Set of Always-
Active Constraints in a System of Linear Inegualities by a Single Linear Pro-
gram, Working Paper No. 1674-85 (Rev.), Sloan School of Management, MIT,
Cambridge, MA.



Example 4: Diagnosing Infeasibility with IIS Isolations

Given: S = {Az > b} =0.
Find: Possible cause(s).
LP: maxwh: TA=0,0<nr<w
(=minwv: Az+v>b, v>0... Phase 1).
Some Facts

e o(m) = IIS iff solution is an extreme point,
e ~ g(r) can be discarded iff solution is interior.
e |o(7)| can guide strategy, especially if solution is interior.

Let w = e in Chinneck’s elastic program:
EP(I): minev: Az+v>2bv2>20,uy;=0friecl.

Start with I = @, and set I' = I U ¢(v) if EP(I) is feasible. Stop when
EP(I) becomes infeasible; then, I contains an IIS.

Total effort to obtain IIS is O(|I| + #EP). An interior solution to EP(I)
can result in #EP = 1.

Example: S ={zy — 22> 1,—2) — 29 > 2,29 > 1}.
S, itself, is an IIS (and the only one). EP(f) has 3 basic optimal solutions:

z' = (1,1),9' = (1,0,0); z* = (2,1),v* = (0,1,0); 2% = (1,0),+% = (0,0, 1);

= #EP = 3 (max possible).
Interior solution = o(v*) = {1,2,3} = #EP =1.
Reference:

J.W. Chinneck and E.W. Dravnieks, 1991. Locating Minimal Infeasible Con-
straint Sets in Linear Programs, ORSA Journal on Computing 3:2, 157-168.
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What is an 1IS?

IIS = Irreducible Infeasible Subsystem:

—Dropping any one constraint causes
subsystem to become feasible.

IIS provides information to analyst to diagnose the cause.

Mathematical fact: some constraint in each IIS is incorrectly stated.




Example 5: Assignment Problem

Given: n people, n tasks, and their assignment costs.

Find: min cost assignment of people to tasks

LE: mincz: ¢ > 0,3z = 1Vj, ). 2y = 1Vi.
z;; = 1 if person 1 is assigned to task j.

If want any optimal assignment = get extreme point solution.
If want to know who should be assigned to tasks = get optimal partition.

Stop Look Listen Go

Mary : 4
John i 1
[rving 1 i
Sarah 5 :

Mary can be optimally assigned either to Look or to Listen. Externalities
can be used to decide...assuming interactive decision support is used.




Example 6: Absolute Value Sensitivity

Given: min } . |c;z;j — fi|: Az =b (rank(A) = m).
Reformulate: min ) ;v;: Az =15
v; + CiT > fj

1) (2
g = ma.:-:{fr} ) ?r;; )
vj — ¢y 2 —f;

Question: How does f; affect the optimal value?

Basic solution = dual price of augmented constraint = 0 or 1.
Can have p; = 0 in the basis found, yet another basis can have p; = 1.

= Basic solution need not reveal whether f; affects the objective at all
... must pivot to find out.

Interior solution = p; = 0 if, and only if, p; = 0 in every optimal solution

= We know 8%z(f)/8f; = 0.

pj > 0= 8%2(f)/0f; = 1.

... It does not matter what the value of p; is!
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Example 7: Multiple Objectives

Given: min{c'z,...,cMz: Az =b,z > 0}
Find: Pareto optimal points

Lexicographic approach:
2! = min{c'z: Az =b,z > 0}

2 = min{c’z: Az=b,2>0,cfz=2Ffork=1,...,p-1}
for p==0....,M

Final Optimality region C Pareto optima

Optimal partitions, {(B¥|N*)}, satisfy

N'CN? ... CN¥={j: z; = 0in every lexico-min solution}

B'D>B? ... 2BM={j:d; = 0in every lexico-min solution}

... More to come.



Summary of Solution Types

Basic - generated by a simplex method.

Strictly complementary - generated by an interior point method.

e Each exists if LP has an optimal solution.
e A solution is both < uniquely optimal (caveate).
¢ Each has information for sensitivity analysis; neither is dominate.

Conversions

Strictly complementary => Basic (“purification”)

not enough — need basis to be compatible for given direction;
too much — might not need basis to find rate and range.

Basic = Strictly complementary (to get optimal partition)

— must visit all basic optima and interrogate nonbasics (for rays).

Basic = Basic

— to reach compatible basis for given direction of change (to get rate)
— traverse all (compatible) bases to get range.

I never met an optimum I didn’t like.
— Milton M. Gutterman
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Another Example of Information in an Optimal Partition

Minimum Cost Network Flow

If two active arcs are adjacent, the difference in prices between the two
nodes always equals the difference in the arcs’ transportation costs:

|An] = [Ad
(over o(m) X o(z)).

Consumer prices (common tail) Producer prices (common head)

cy fi)™
Cik (k) Tk

Tj— M =Gj — Gk
(dij = cij +mi —m; =0
dix = cig + m — m = 0)

'TC,'

(Active could be replaced by basic, but the above is a stronger statement.
If a nonbasic reduced cost = 0, there is no assurance that it is not positive
in some other optimal solution.)

This constant difference is true in every optimal solution.

Everything should be made as simple as possible, but not simpler.
— Albert Einstein



Some Conclusions

e There exist analysis questions for which the optimal partition has more
valuable information than a basic solution.

e It is costly to obtain the optimal partition using an optimizer that
generates only basic solutions (so an interior method is needed).

e There are challenging frontiers in using underlying structure of an inte-
rior solution to provide useful information for sensitivity analysis (e.g.,
central path and animation).

The pure and simple truth is rarely pure and never simple.
— Oscar Wilde



