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This elaborates on convex analysis. Its importance in mathematical programming is due to
properties, such as every local minimum is a global minimum. Any basic text on nonlinear
programming defines and illustrates convex sets and functions. The classics of Griinbaum [2]
and Rockafellar [3] are still outstanding books to have for in-depth understanding. This note
is simply a digest of fundamental concepts and facts.

Definition 1 The (closed) line segment joining two v
points, u, v, is given by: A=1
u

[u,v] = {Au+(1—-A)v: 0 <A< 1}
Figure 1: Line segment of u,v

The open line segment is (u,v) = {Au+ (1 — A)v: 0 < A < 1} (simply the exclusion of the end
points, u,v).

Definition 2 A set S is convez if u,v € S implies [u,v] C S.
R", [u,v], (u,v), and @ are convex sets.
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Figure 2: Convex sets have no holes or wrinkly boundaries

The intersection of (a possibly infinite number of) convex sets is a convex set. Once we establish
conditions on each constraint function (g;) such that {z € X: g;(z) < 0} is a convex set, we
will have established the convexity of the intersection given by the standard vector inequality,



{z € X: g(z) < 0}. When the feasible region has no holes or wrinkles, we can expect good
behavior from algorithms designed to move toward an optimum. The straight line from any
feasible point to an optimum is completely within the feasible region. Thus, think of convexity
as a “betweeness” property.

Definition 3 A convez combination of a set of points, z',..., 2% € X is a vector z given by

k k
T = Zz\ixi for some A > 0 such that Z A= 1.
i=1 i=1

Each point in the line segment, [u,v], is a convex combination of u and v. Each point in the
unit square with corner points, (0,0), (0,1), (1,1), (1,0), is a convex combination of the corner
points.

Definition 4 The convez hull of a set X, denoted convh(X), is the set of all convex combi-
nations of the points in X.

If X is a convex set, convh(X) = X; otherwise, the convex hull is a proper superset of X,
which “fills in” holes and wrinkles. If X is a finite set, convh(X) is a polytope.

Figure 3: Convex hulls

Definition 5 Suppose x € S. Then, z is an extreme point of S if there does not exist u,v € S
such that z € (u,v).

The extreme points of a line segment are its two end points. The extreme points of a square
are its four corner points. Every extreme point is a boundary point, but not conversely. Every
extreme point of X is an extreme point of convh(X), but not conversely. If S is a closed,
bounded, convex set with extreme points, ext(S), then S = convh(ext(S)) — i.e., S is the set
of all convex combinations of its extreme points — i.e., every point in S can be written as a
convex combination of its extreme points.
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Figure 4: Extreme points are darkened boundary points

H*
Definition 6 A hyperplane is the set H = {z: az = b}
for some a # 0. Its halfspaces are
a
closed halfspaces: H™ = {z: ax > b}, H~ = {z: ax < b}; H
open halfspaces: Ht" = {z: az > b}, H ~ = {z: az < b}.
H

Figure 5: Halfspaces with b =0

A hyperplane and each of its halfspaces are convex sets.

A polyhedron is the intersection of a finite number of halfspaces. This can be written as
{z € R": Az < b}, where A is an m X n matrix with no null rows, and b is an m-vector. The
i-th inequality, A;,z < b; defines the halfspace associated with the hyperplane {z: A;,z = b;}.
Every polyhedron has a finite number of extreme points. A single hyperplane or halfspace is
a polyhedron with no extreme point. An orthant is a polyhedron with one extreme point —
the origin. If a polyhedron is bounded, it is a polytope. (Some authors reverse the definition
of polyhedron and polygon, where it is the polyhedron that is a bounded polytope, but the
definition here is more widely used.) A succinct introduction, with focus on computational
problems, is given by Fukuda [1].

Definition 7 H is a supporting hyperplane at z € Sifx € HNS and S C H*.

X
§ § SSE No supporting H
X X
: y

Supporting H exists at every boundary point No supportingH at any x ~ SupportingH at x and y
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Figure 6: Supporting hyperplanes can exist only at boundary points

In fact, every closed, convex set equals the intersection of the halfspaces of its supporting
hyperplanes. In the case of a polyhedron, the number of supporting hyperplanes can be
limited to be finite. On the other hand, the disc requires an infinite number, one for each of
the extreme points that comprise the circumference.



If we consider maximizing or minimizing a linear function, cz, over a set, S, we obtain a
supporting hyperplane H = {z: cx = cz*}, where z* optimizes cz on S. By definition of
maximum, we must have S C H, and by definition of minimum, we must have S C HT, so
in either case, H supports S at z*. Convexity in this context is an inverse property: if S is
convez and T is any boundary point in S, there exists a linear function, cx, for which cZ is the
mazimum value of cx on S (and T minimizes —cz). We cannot make this claim if S is not
convex.

An important foundation for linear programming (LP) is that if an optimum is attained in
the polyhedron, {z: Az = b,z > 0}, it must be attained at an extreme point. Instead of the
inverse question, we are given ¢, and we assert that cz* occurs at an extreme point (if there is
an optimum). This follows immediately from the following theorem if the feasible region of the
LP is bounded. It can fail when the feasible region is not bounded, such as when there are no
extreme points. (The theory of LP is both geometric and algebraic, and the connection is made
by assuming rank(A4) = m, in which case pathologies vanish and the Supporting Hyperplane
Theorem applies indirectly.)

Supporting Hyperplane Theorem. Suppose S is non-empty, closed, and bounded. Then,
every supporting hyperplane of S contains an extreme point of S.

Definition 8 H is a (strictly) separating hyperplane
between two sets, S and X in R", if either

SCH ™ and X CHTT S
or SCH™ and XCH ~

Figure 7: Separating hyperplane

Separating Hyperplane Theorem. Suppose S and X are closed, convex sets in R™. Then,
S N X = ( iff there exists a separating hyperplane between them.

The usual way to prove this is by first considering X = {z} (a single point not in S). We can
then identify the point in S that is closest to  and draw the line segment between them. A
separating hyperplane is the perpendicular bisector of that line segment. The convexity of S
ensures that it cannot “wrap around” with points in the same halfspace as . This case is used
as a lemma to prove the more general Separating Hyperplane Theorem.

One application is when we are given two finite sets of points, and we want to know if there
exists a separating hyperplane between them. This would then serve as a way of knowing when
a new point belongs in the class represented by S versus the class represented by X. Such a
separating hyperplane exists iff their convex hulls are disjoint — i.e., there exists H for which
S CH ~ and X C H*" iff convh(S) N convh(X) = 0.



Figure 8: Separating data clusters <+ disjoint convex hulls

Definition 9 A ray through a point £ # 0 is the
halfline emanating from the origin: X

0
R(z) = {Az: A > 0}.
Figure 9: Ray through =

Definition 10 A (closed) cone, C, is a set such that z € C implies R(z) C C. A convez cone
is a cone that is a convex set. A polyhedral cone is a cone that is a polyhedron.

R", {0} and () are convex cones. The union of rays, such as two or more coordinate axes, is a
cone, but it is not convex. A convex cone can also be defined as a cone C with the property that
u,v € C implies u + v € C. Convex cones are closed under intersection; cones (not necessarily
convex) are also closed under union. If C is a polyhedral cone, there exists a matrix A such
that C = {z: Az < 0}. The quadratic surface, {z € R% az? + bxizs + cz? = 0}, is a cone,
but not polyhedral.

Definition 11 An extreme ray of a convex cone, C,
is a ray in C that cannot be expressed as sum of two
other rays in C. \ Z

Figure 10: Extreme rays are arrows

Given the convex, polyhedral cone C = {z € R™: Az = 0,z > 0} for which C # {0}, let
S ={z € C: 3}_;z; = 1}. Then, for any z € C'\ {0}, R(z) is an extreme ray of C iff
z/ Y% j is an extreme point of S.



Definition 12 The recession cone of a polyhedron
P = {z: Az < b} is rec(P) = {h: Ah < 0}.

Figure 11: Recession cone

The recession cone is sometimes called the characteristic cone. When P is bounded, rec(P) =
{0}. Otherwise, every vector in the recession cone defines a feasible halfline rooted at any
point in P. In general, rec(P) = {h:  + h € P for all z € P}, so if P = {z: Az = b,z > 0},
rec(P) = {h: Ah=0,h > 0}.

Minkowski-Weyl Polyhedron Decomposition Theorem. If P is a convex polyhedron,

P = convh(ext(P)) + rec(P).

This means

m m M
xEP(—)Hu,AZO,ZAi: 1 such that sz)\wi—l—Zmn,

where {v;}7* is the set of extreme points of P, and {R(r;)}} is the set of extreme rays of P.
Further, Caratheodory’s Theorem says that we can find coefficients such that at most n+ 1 of
them are positive.

Definition 13 A simplez in R™ is convh{vg,v,...,v,}
such that v; — vg,...,v, — vg are linearly independent.
The dimension of the simplex is n.

Figure 12: Simplex in R?

If n» = 0, the simplex is just a point, and for n = 1, it is a line segment with distinct end
points. A simplex is a triangle in 2-space and a tetrahedron in 3-space. A common simplex
is the convex hull of the origin and unit vectors, {0,e1,...,e,}, where e; is the i-th column
of the identity matrix. Any n + 1 distinct extreme points of a polyhedron satisfy the linear
independence property. Thus, another way to state Caratheodory’s Theorem for a polytope
(where there are no rays) is to say that every point belongs to a simplex (possibly of lower
dimension) defined by (at most) n + 1 extreme points.

Definition 14 The dimension of a convex set is the maximum of the dimensions of simplices
it contains.



The intersection of a polyhedron, P = {z: Az > b}, with one of its supporting hyperplanes is
a face of P. The extreme points of P comprise the faces of dimension zero. Faces of dimension
1 are the edges of P. In general a face F, of P, is either (), all of P, or satisfies:

F={ze€P: Ajjx=0b;fori €I} and dJx € F: A;,x < b; fori ¢ I.

If P has dimension n, the faces of dimension n — 1 are called facets. If each facet is a simplex,
the polyhedron is simplicial.

Definition 15 A function, f : X — Y is convez if X (its domain) is a convex set, and u,v € X
implies

fOu+ (1 —=XNv) <Af(u)+ (1 —A)f(v) for 0 <A< 1.
It is strictly convez if strict inequality holds for u # v.

A function is (strictly) concave if —f is (strictly) convex; equivalently, if

FOu+ (1 —=Xv) > Af(u)+ (1 =) f(v) for 0 <A< 1.
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Figure 13: Functions on R

Linear affine functions (of the form az — b) are both convex and concave on any convex subset
of R". The square Euclidean norm, ||z — c||?, is convex. More generally, a quadratic function,
2'Qz, is convex on R" if it is never negative (i.e., Q is positive semi-definite); it is strictly
convex if z'Qx > 0 for all z # 0 (i.e., Q is positive definite), such as Z?Zl x? z'Qz is concave
if it is never negative (i.e., @ is negative semi-definite); it is strictly concave if z'Qz < 0 for
all z # 0 (i.e., @ is negative definite). It is neither convex nor concave on R" if u*Qu > 0 for
some u and v'Qu < 0 for some v (e.g., z? — z2).

Sums of convex functions are convex. In particular, cz + z'Qz is convex if ) is positive semi-

definite. By extension, if f; and fo are each convex on R, f(z1,z2) = fi(z1)+ f2(w2) is convex
2

on R”.

When f is differentiable, convex functions obey the inequality
fl@+h) > f(z) +h'Vf(2)

(opposite inequality for concave function). If second derivatives exist, the hessian is positive
semi-definite (negative semi-definite for concave function). The inequality means that extrap-
olation along the gradient underestimates the value of a convex function, and overestimates
the value of a concave function.



Interpolated value

Extrapolated value (ope= v f(X) )

u x x+h v
Figure 14: Interpolation overestimates and extrapolation underestimates a convex function

We can also characterize functions as sets, which provides a unified treatment of convex anal-
ysis.

Definition 16 Suppose f: X — R. The graph, epi-
graph, and hypograph are defined respectively:

grph(f, X) = {(z,2): z € X,z = f(x)}

epi(f,X) = {(z,2): z€ X,2> f(x)}
hypo(f,X) = {(z,2): v € X,z < f(z)}

Figure 15: Sets of a function

Then,
fisconvex on X < epi(f,X) isa convex set

f is concave on X <> hypo(f,X) is a convex set

f is affine on X + grph(f,X) is a convex set

The standard form of a mathematical program is
max f(z): € X, g(z) < 0,h(z) =0,

where) # X CR", f: X —» R, g: X — R™, and h : X — RM. The feasible region is denoted
F = {z € X: g(z) < 0,h(z) = 0}. The optimal region is denoted X* = {z* € F: f(z*) >
f(z) for all z € F}.

A convez program is a mathematical program for which X is a convex set, g is convex on X,
h is affine on X, and f is concave (for maximization) on X. Key properties:



The feasible region is a convex set because

(v) <0 —
h(u)=h(v) =0 — h(Adu+ (1 —X)v) = Ah(u) + (1 — AN)h(v) =
for 0 <AL

Q
—
<
~—
Q

The optimal region is a convex set because

x* = {a" € F: f(&") > f(o)}.

TEF

Every local optimum is global because
z+h€Fand f(x+h) > f(z) >z +eh € F and

fle+eh)> 1 —¢e)f(z)+ef(z+h)> f(z) foralle € (0,1)

(so z could not be a local maximum in F' unless it is a global maximum, which disallows
the contradictory strict inequality).

When X = R" and f,g are differentiable such that g(z) < 0 for some z such that
h(z) = 0, the Lagrange Multiplier Rule is both necessary and sufficient for z* to be
(globally) optimal:

There exists A\ € R™ and p € RM for which A > 0, A\g(z*) = 0, and
Vf(z*) — AVg(z*) — pVh(z*) = 0.

There are some pathologies. For example, while every convex function is continuous on the
interior of its domain, it can have a discontinuity at the boundary. An example is X = [0, 00)
and f(z) =z ifz > 0, but f(0) = K > 0. For the most part, convex functions are well behaved
from an optimization view. All linear functions are convex, as are a large class of quadratics,
which includes the square Euclidean norm, ||z — c||?>. All norms are convex. Further, the
additivity property allows us to build up more classes of convex functions.



convex=increasing slope

concave=decreasing slope

linear=constant slope

Figure 16: From an economics view, a linear function yields a constant return to scale, a convex
function yields an increasing return to scale, and a concave function yields a decreasing return
to scale.
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