
Math 4/5779: Mathematics Clinic

Pathway Inference: Computational Issues

Supplement: Bibliography

Taught by Harvey J. Greenberg

Assisted by Raphael Bar-Or, Lance Lana, Cary Miller, Tod

Morrison and Christiaan van Woudenberg

Sponsored by

DMI BioSciences, Genomica and Tech-X

Spring Semester 2002

May 23, 2002

This supplement contains the complete bibliography, most of which were
compiled before the semester began. Student annotations have been left
separate, rather than merged. Unsigned annotations are by Harvey J. Green-
berg, most of which were done early to serve as examples.



Mathematics Clinic Supplement 1

Bibliography

[1] T. Akutsu, S. Miyano, and S. Kuhara. Identi�cation of genetic net-
works from a small number of gene expression patterns under the
boolean network model. In R.B. Altman, A.K. Dunker, L. Hunter,
and T.E. Klein, editors, Proceedings of the Paci�c Symposium on Bio-

computing (PSB), volume 4, pages 17�28, http://www-smi.stanford.
edu/projects/helix/psb01/, 1999. World Wide Web.

The boolean network model infers genetic network ar-
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spond to time series of gene expression patterns. This
article reports the results of computational experi-
ments, suggest that a small number of stage transition
(INPUT/OUTPUT) pairs are su�cient in order to infer the
original Boolean network correctly. It goes on to discuss the
practical usefulness of this model.
� Dung T. Ngyuen

This paper proposes an algorithm for inferring genetic net-
work architectures from state transition tables which corre-
spond to time series of gene expression patterns, using the
Boolean network model. It is argued that if the indegree of
each node is bounded by a constant, only O(log n) state tran-
sition pairs are necessary and su�cient to identify, with high
probability, the original Boolean network of n nodes cor-
rectly. The paper describes the computational experiments
executed in order to expose the constant factor involved in
O(log n) notation. The computational results are used to
show that a Boolean network of size 100,000 can be identi-
�ed by their algorithm from about 100 INPUT/OUTPUT
pairs if the maximum indegree is bounded by 2. The paper
claims that the algorithm is conceptually so simple that it is
extensible for more realistic network models.
� Adolfo Perez-Duran

[2] M. Arita. Metabolic reconstruction using shortest paths. Simulation

Practice and Theory, 8:109�125, 2000.

This explains bottom-up fashion of biological models to
reconstruct. It considers all possible consequences from
observed laboratory data to check their validation. The
AMR(automated metabolic reconstruction) is a simulation
system for the metabolic reconstruction. The graph-oriented
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cellular component. A biological process uses molecular
functions to transform something. A molecular function is
the biochemical activity of a gene product. The cellular
component refers to the area where the gene product is
active. While one could imagine there is a single gene
product unifying entries in each hierarchy, a gene product
might actually have multiple assignments. It might be
involved in various biological processes, perform several
molecular functions and do so at di�erent parts of the cell.
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mental conditions used to observe the interaction, conserved
sequence, molecular location, chemical action, kinetics, ther-
modynamics, and chemical state. An interaction contains an
NCBI date object, a sequence of updates for an audit trail,
an interaction identi�er (IID) accession number, two inter-
acting molecules (BIND-objects), a description of the inter-
action, a series of publications and a private �ag. The BIND
ID number space is controlled using a unique key server.
� Xuan Le
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The authors give an overview of the ontology for the Trans-
parent Access to Multiple Biological Information Sources
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(TAMBIS). In particular, they claim that an ontology is
needed that re�ects the view of the data. Furthermore, they
claim that Description Logics (DLs), which are a form of in
silico knowledge representation, have the �exibility, consis-
tency, and other necessary properties to construct a bioin-
formatic ontology that can be used to make inferences. The
authors compare DLs to frame representations, as used in
the EcoCyc database. They claim that one way in which DLs
have an advantage is that not only do they have a mecha-
nism for capturing declarative knowledge, but DLs also have
a built-in classi�er that allows for reasoning. In a frame rep-
resentation the hierarchy of concepts is static and built in
by the modeler. In a DL representation a concept is inserted
into the hierarchy by the classi�er and may be reclassi�ed
when new information is given about the concept. Addition-
ally, a concept may have more than one parent in a DL, as
opposed to just one, giving the DL greater �exibility. This
is important because often times in biology one concept can
be viewed in many di�erent ways. The TAMBIS ontology
was written in the GRAIL language, and this paper gives
a very through description how GRAIL enables the TAM-
BIS ontology to work through the use of assertions, opera-
tions, reasoning services, and sanctions. The authors men-
tion that currently the TAMBIS ontology has more breadth
than depth and they discuss the known limitations of DLs
and of GRAIL in particular. The primary aim of TAMBIS is
to develop a system �exible enough to perform some of the
tasks of a domain expert.
� Tessa F. Weinstein
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In this article, the authors present a dynamically generated
graph layout algorithm that is designed to handle cyclic, par-
tially cyclic, linear, and branched metabolic pathways. The
authors propose an algorithm that speci�cally deals with the
main nodes of complex pathways without graphing the side
reactions. By using a recursive algorithm, the graph repre-
senting the metabolic pathway to be displayed is partitioned
into subgraphs, which have simple display methods. The au-
thors also describe the use of a spring embedding algorithm
to position the primary parts of the graph relative to one
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another. While the algorithm was only tested on �ve path-
ways the results were promising.
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the reader through carefully examined examples, pointing
out both good and bad points. Other chapters bear further
study, as they deal with di�erent aspects of modeling genetic
and biochemical networks.
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A model of pattern formation in the early embryo is pre-
sented that depends on the family of Wnt kinase and RPTP
phosphatase signaling pathways. The question asked is how
such signaling molecules, consisting of kinases and phatases,
are able to make complex patterns. This process is mod-
eled as a system of PDEs, which includes a combination
of the Laplacian and nonlinear Helmholtz equations. The
Laplacian operator on a curved epithelial surface is called
the Beltrami operator. Numerical results are given for the 1-
D case, that analyze which regions set apart the binary gene
selection of a particular pattern. A discussion highlights sim-
ilarities between physical and biological processes and how
these famous equations apply to both.
� Rico Argentati

[17] E. Davidson. Genomic Regulatory Systems: Development and Evolu-

tion. Academic Press, Reading, MA, 2001.

This book takes the theory of genetic regulation developed
over the past 50 years and reduces it to its most basic essence.
When this is done the problem begins to resemble circuit
design or reverse engineering of circuits. The basic idea is
that a gene is controlled by cis and trans regulatory ele-
ments, with the former being binding binding sites or other
DNA elements and the latter being transcription factors.
The expression of a gene is determined by the combination
regulatory elements acting on it and their orientation with
respect to one another. The two running examples through-
out the book are embryonic development in Drosophila and
sea urchin. These two genera represent hugely divergent evo-
lutionary cousins and so if the same things happen in both
that is a good indication that the same probably happens in
all multi-cellular creatures. These two model systems have
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been used to uncover universal principles of animal develop-
ment.
� Cary Miller
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NM, 2000.
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This paper focuses on generating models that allow them to
systematically derive predictions about important biologi-
cal processes in disease, development and metabolic control.
They use clustering of co-expression pro�les, which allow
them to infer shared regulatory inputs and functional path-
ways. The reverse engineering has the goal of identifying the
causal relationships among gene products that determine im-
portant phenotypic parameters. Using the network inference,
the goal of this project is to construct a coarse-scale model
of the network of regulatory interactions among the genes.
� Xuan Le
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In this article the authors describe the development of
the Compound, Organism, Reaction and Enzyme (CORE)
database management system. CORE was programmed in
Java and intended to encapsulate and serve the information
in the University of Minnesota Biocatalysis/Biodegradation
Database (UM-BBD). The UM-BBD contains pathway in-
formation concerning the biodegradation of compounds. The
article details the development of CORE, the hardware and
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sequence information with graph topology for comparison of
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apply the distance of the di�erence between ortholog and
paralog and gap penalty technique for missing functional
roles.
� Min Hong

[35] J.J. Fox and C.C. Hill. From topology to dynamics in biochemical
networks. IGERT program in nonlinear systems, Cornell University,
Ithaca, NY, 2001.

[36] C. Friedman, P. Kra, H. Yu, M. Krauthammer, and A. Rzhetsky.
GENIES: a natural-language processing system for the extraction of
molecular pathways from journal articles. Bioinformatics, 17(Supple-
ment 1):S74�S82, 2001.

GeneWays is a program that has the ability mine data from
biological literature. The program enacts a literature search
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relationships between biological molecules.
� Ben Perrone

GENIES is a natural-language processing system that has
been highly successful in specialized domains. The GENIE
system extracts and structures information about cellular
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pathways from the biological literature in accordance with
a knowledge model that developed earlier. A modi�cation
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guage processing system is a powerful tool of molecular bi-
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� Dung T. Ngyuen
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MIT Press.
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At present, functional prediction of genes and genomes
is done by searching similarities of each in the sequence
database or the motif libraries and to extend sequence
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similarities to functional similarities. The problem is the
sequence-function relationships of molecules do not contain
higher level information of how components are connected to
form a functional unit, such as a metabolic pathway. Project
KEGG (Kyoto Encyclopedia of Genes and Genomes) tries
to computerize current knowledge of the information path-
ways of genes and gene products, which may be considered
wiring diagrams of biological systems. The data of interact-
ing molecules or genes is represented using the binary rela-
tions that correspond to the pair wise interaction. Interac-
tions involving more than two components are approximated
by a collection of pair wise interactions. KEGG has two ma-
jor purposes, �rst to establish an integrated view of gene
products, namely how they are interacting. Second, it will
provide a practical tool for making assignments of enzyme
genes from genomic sequences. The major feature of KEGG
is its link capabilities, both in terms of linking to the existing
databases and di�erent organisms and in terms of the linking
to compute a pathway from binary relations. By represent-
ing each reaction as a collection of binary relations KEGG
tries to reproduce the known pathways.
� Adolfo Perez
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The authors describe a model-driven approach for the anal-
ysis of genomic expression data, which permit genetic regu-
latory networks to be represented in an interpretable form.
The models are Bayesian networks that contain latent vari-
ables capturing unobserved factors, which describe arbitraily
complex relationships. The graph semantics permit anno-
tated edges and score models.
� Ben Perrone
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Reviews Genetics, 2:268�279, 2001.

Most of the gene regulatory schemes proposed o�er qualita-
tive information only. If a deep understanding of regulation is
to be achieved, we require quantitative modeling techniques
in concert with experiment. This is the basis for the au-
thors' argument: an engineering approach is desirable. The
paper goes on to describe the current state of such e�orts and
provides an extensive bibliography. Much has been achieved
in the study of nonlinear dynamics and stochastic process.
People are now applying this work to biosystems. Gene cir-
cuits are compared to electric circuits. Electric circuits are
governed by well-understood physical laws and perterbation
of such circuits has predictable e�ects. It is not yet clear
whether gene circuits will ultimately be as predictable but
nevertheless people are working on it. The understanding of
electric circuits is based on a thourough knowledge of the
individual components; resistors, capacitors, etc. That level
of detailed knowledge is not there yet for the components
of gene circuits; transcription factors, promoters, etc. The-
oretical models without a connection to experiment are not
very useful. Modelers have sometimes tended to let their
imaginations run wild and made very elegant models that
are untestable or just not useful for describing real biology.
Most of the models here have an experimental component.
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will probably never get a complete understanding of gene cir-
cuits through the reverse-engineering approach implied. Now
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phan operon of E. coli. The author presents a model, Gen-
sim, which describes the biochemical reactions that deter-
mine the expression of the genes, the reactions by which
the genes direct the synthesis of enzymes, and the reactions
catalyzed by these enzymes. He then presents a detailed dis-
cussion of the implementation of this model.
� Tod Morrison

[52] P.D. Karp. An ontology for biological function based on molecular
interactions. Bioinformatics, 16(3):269�285, 2000.

This paper discusses functional bioinformatics, the idea of
computation that involves the function of proteins. The on-
tology is a step toward a controlled, precise vocabulary for
biology. Discusses the use of Lisp as the implementation lan-
guage for the EcoCyc system and gives a series of exam-
ple queries that could be used with EcoCyc. All example
queries are relatively simple. The article suggests that more
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complex queries are possible. Distinguishes 'local' and 'inte-
grated' function for proteins.
� Cary Miller et al.

[53] P.D. Karp. Pathway databases: A case study in computational sym-
bolic theories. Science, 293:2040�2044, 2001.

This article introduces the concept of pathway genome
database (PGDB) as a method of describing biochemical
pathways and their component reactions, enzymes and sub-
strates. A PGDB includes pathway information as well as in-
formation about the complete genome of the organism. The
EcoCyc project is provided as an example of a PGDB. Eco-
Cyc is structured using an ontology of about 1000 classes.
The PGDB consists of a network of interconnected frames.
Each frame represents a biological object. The labeled con-
nections between the frames represent semantic relationships
between the objects. The key to this representation is de-
vising an ontology that clearly de�nes the meaning of the
di�erent PGDB �elds and provides ease of extension when
new domain concepts are discovered. The authors include a
discussion of a program called �PathoLogic,� which was de-
veloped to predict the metabolic network from the genome
of an organism. Prediction of pathway �ux rates for the en-
tire metabolic network of an organism is also discussed. The
authors stress the importance of using database content in
solving these computational problems. There are no known
algorithms that can solve these problems without being cou-
pled with an accurate and well-designed pathway DB.
� Lance Lana et al.

[54] P.D. Karp, M. Krummenacker, S. Paley, and J. Wagg. Integrated
pathway/genome databases and their role in drug discovery. Trends in
Biotechnology, 17(7):275�281, 1999.

Reviews the use of EcoCyc and PathoLogic to construct new
pathways for prokaryotes other that E. coli. Pathways for
new organisms are compared to E. coli and the annotated
genome is used to populate the knowledge base. Pathways
present in a new organism but not in E. coli are added by
hand. Presents methods used for the identi�cation of false
information in the annotated genome.
� Cary Miller et al.
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[55] P.D. Karp, C. Ouzounis, and S. Paley. HinCyc: A knowledge base
of the complete genome and metabolic pathways of H.in�uenzae. In
D.J. States, P. Agarwal, T. Gaasterland, L. Hunter, and R.F.Smith,
editors, Proceedings of the Fourth Intelligent Systems for Molecular

Biology Conference (ISMB), pages 116�124, Menlo Park, CA, 1996.
AAAI Press.

Haemophilius In�uenzae is a rod-shaped bacteria that is the
leading cause of meningitis in children, and the second most
common cause of bacterial pneumonia. As a bacterial in-
fection, it is treated with antibiotics. A good collection of
references for H.in�uenzae can be found at http://www.
bacteriamuseum.org/species/Hin�uenzae.shtml. Karp et al.
apply the knowledge and methodology learned from creating
the EcoCyc knowledge base to construct metabolic pathway
representations for H. in�uenzae. They use a bootstrap ap-
proach to populate the new KB from gene data at The In-
stitute for Genomic Research (TIGR) and infer pathways.
The completed knowledge base contains data about genes,
enzymes, reactions, pathways and compounds that occur in
H. in�uenzae, and the functional homologues that occur in
E. coli.
� Raphael Bar-Or et al.

In this article the authors describe a methodology for pre-
dicting which metabolic pathways that are present in E.

coli are also present in H. in�uenzae. The EcoCyc knowl-
edge base (KB) contains information regarding the known
metabolic pathways of E. coli. Recently, the genomic se-
quence of H. in�uenzae was completed, allowing the authors
to develop a process by which they compare H. in�uenzae
to E. coli and store the prediction results in the HinCyc
KB. First, the authors created gene objects in HinCyc and
compared them to E. coli proteins, those with homologous
sequences were obtained. Next, they created polypeptide ob-
jects and then a protein-complex object. The authors note
that these objects were created in a conservative fashion so
that the resulting prediction would be minimal but accurate.
They then determine what reactions are catalyzed by the H.
in�uenzae enzymes, and �nally make pathway predictions.
They discuss the limitations of their method, related work,
and lastly suggest how better information might make pro-
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cess more accurate.
� Tessa F. Weinstein

[56] P.D. Karp and S. Paley. Integrated access to metabolic and genomic
data. Journal of Computational Biology, 3(1):191�212, 1996.

This article addresses the EcoCyc system, which consists of
a graphical user interface (GUI) that provides integrated ac-
cess to a metabolic and genomic knowledge base (KB) for
E. coli. EcoCyc is the result of joint work between SRI In-
ternational and the Marine Biology Laboratory (MBL). The
authors advocate their choice of implementing the KB as
a frame based system called �HyperTheo.� They argue that
this is a very e�cient and rapid way of implementing the KB
because it adapts easily to the ever-changing world of biol-
ogy. The authors also discuss their dynamically generated
display of signaling pathways as a mixture of hypertext and
gif �les, using a tool they developed to retro�t CLIM ap-
plications to be displayed on the World Wide Web. Several
examples are presented that include an enzyme display for 2-
dehydro-3-deoxphosphoheptonate aldolase, graphical depic-
tions of biosynthetic pathways for threonine, phenylalanine
and tyrosine, as well as a genomic map display. They fur-
ther describe the use of a user-friendly but very restricted
GUI to query the KB. Only pre-formed options can be used
to query the KB from the GUI, which prohibits complex
Boolean searches.
� Lance Lana et al.

[57] P.D. Karp and S.M. Paley. Automated drawing of metabolic path-
ways. In H. Lim, C. Cantor, and R. Robbins, editors, Proceedings
of the Third International Conference on Bioinformatics and Genome

Research, 1994. Note: reprinted in 2000 at SRI.

[58] P.D. Karp and S.M. Paley. Representations of metabolic knowledge:
Pathways. In R. Altman, D. Brutlag, P. Karp, R. Lathrop, and
D. Searls, editors, Proceedings of the Second Intelligent Systems for

Molecular Biology Conference (ISMB), pages 203�211, Menlo Park,
CA, 1994. AAAI Press.

Karp and Paley discuss the formulation of a database schema
and a set of accompanying software tools which form the
knowledge base known as EcoCyc. The core problem is one
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of path representation; how can one most e�ciently store
pathway data and still construct complete pathways? The
authors discuss the problems encountered during their for-
mulation of the knowledge base and propose solutions to
achieve a complete reconstruction of the known pathways in
E. coli. Relationships between reactions is stored in a prede-
cessor list, containing tuples of a reaction and its predecessor
compound in the pathway. Main versus side compounds and
direction in individual reactions is determined by the prede-
cessor list along with a list of heuristics.
� Raphael Bar-Or et al.

In this article Karp and Paley tackle the di�cult problem
of using information in the EcoCyc knowledge base (KB)
to obtain a pathway graph, with the ultimate goal of us-
ing the pathway graph to create a pathway map. The Eco-
Cyc knowledge base is a database (DB) that has information
pertaining to the genes and intermediary metabolism of E.
coli. Speci�cally, it contains information about the genes, en-
zymes, reactions and chemical compounds that participate
in the metabolic pathways in E. coli. Their goal was to use a
minimal amount of information from the KB to accomplish
this so that the KB would be easy to maintain and update.
The primary contribution they made to this end was what
the authors call a predecessor list, which e�ectively gives re-
actions in a pathway order. Using the predecessor list and
information stored in the KB about reactions, the enzymes
that catalyze those reactions and the chemical compounds
that are active in those reactions, Karp and Paley develop an
algorithm based on production rules and heuristics to turn a
predecessor list into a pathway graph. To this end they are
somewhat successful.
� Tessa F. Weinstein

In this article the authors present an automated graph layout
algorithm that dynamically draws given pathways present in
the EcoCyc database. The algorithm determines the topol-
ogy of the pathway as being cyclic, linear, or branched.
Larger groupings of such pathways are handled by prede-
�ned layouts that are applied to the subgraphs within the
pathway. Facilities for navigating, expanding and collapsing
pathways within the user interface are discussed. Complex
junctions and super-pathway algorithms are also discussed.
It is apparent that one of the goals of the algorithm is depth
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of representation, but not necessarily breadth.
Lance Lana et al.

[59] P.D. Karp, M. Riley, M. Saier, I.T. Paulsen, S.M. Paley, and
A. Pellegrini-Toole. The EcoCyc and MetaCyc databases. Nucleic

Acids Research, 28(1):56�59, 2000.

The authors provide an update on the EcoCyc and Met-
Cyc knowledge bases, now uni�ed under a common software
toolbox called �The Pathway Tools,� released as version 5.0
at the time of publication. While EcoCyc attempts to com-
pletely document the metabolic map of E. coli, MetaCyc is
designed as a reference for metabolic pathways in various or-
ganisms, without the detailed genetic information provided
in EcoCyc. The breadth of information contained in EcoCyc
has been expanded to include membrane transport systems
with the same level of detail a�orded to the metabolic path-
ways represented in EcoCyc already. This allows researchers
to query the relationships between metabolic pathways and
transport systems at the cellular level. MetaCyc is built on
the framework of EcoCyc, but it is expanded to contain
species information for each pathway reaction. It does not
contain any genetic map information.
� Raphael Bar-Or et al.

This article focuses on describing the information contained
in, and the available forms of query to access, the EcoCyc
and MetaCyc databases. EcoCyc is a database (DB) that
contains biochemical information about E. coli, such as sig-
nal transduction pathways, transports, and its genes. A re-
cent addition to this DB is information regarding membrane
transport systems. MetaCyc, on the other hand, aims to de-
scribe metabolic pathways from a variety of di�erent species.
The information it contains about pathways includes reac-
tions, enzymes and substrate components. However, it does
not include information about transport processes like the
EcoCyc database does.
� Tessa F. Weinstein

[60] H. Kitano, editor. Foundations of Systems Biology. MIT Press, Cam-
bridge, MA, 2001. editor's introduction, Systems Biology: Toward

System-level Understanding of Biological Systems, is also available at
http://www.cds.caltech.edu/erato/.
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[61] F. Kolpakov, E. Ananko, G. Kolesov, and N. Kolchanov. GeneNet: A
gene network database and its automated visualization. Bioinformat-
ics, 14(6):529�537, 1998.

This paper presents an object-oriented database, called
GeneNet, and the software for its automated visualization.
The authors describe three major models for the gene net-
works and their dynamics: (1) logical description, in which
variables the gene networks components and functions the
relationships between the components can take only a lim-
ited number of values, typically only 0, 1 and 2; (2) de-
scription of the gene network dynamics using a system of
non-linear di�erential equations; and, (3) stochastic model
of the gene network, which is most applicable to those parts
of the gene network where small events are determined by
a very low concentration of transcription factor. The major
goal of the object-oriented database model is to ensure se-
mantic data integrity where it re�ects the real world and has
other merits versus the relational model. The state of a gene
network the objects involved, their states and interactions
depends on the type of cells, inducers and other factors.
� Xuan Le

The authors describe the automated visualization of gene
networks in their GeneNet database through a Java based
graphical user interface found at http://wwwmgs.bionet.nsc.
ru/systems/MGL/GeneNet/. While most other gene net-
work data bases have been drawn manually, GeneNet's soft-
ware provides automated construction of gene network di-
agrams. GeneNet is based on an object-oriented approach
with entities such as cell, protein, gene and substance be-
ing related to each other by relations such as reaction and
regulatory event. The resulting gene network diagram is a
graph with nodes corresponding to entities and arrows rep-
resenting relations. In order to automatically construct the
graph, the nodes are �rst assigned to regions of the graph.
Then, the size of the regions are determined and the arrows
are drawn. GenNet also provides �lters such as the ability to
�lter out the entities and relationships that have not been
experimentally veri�ed. All of the images are interactive al-
lowing a user to click on an image to view more information.
The main advantage to automated drawing of gene network
diagrams is that the diagrams can be automatically updated
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when new data is obtained. The major disadvantage is that
the algorithm is not yet capable of drawing the very complex
diagrams that humans are able to construct.
� Lance Lana

[62] F. Kose, W. Weckwerth, T. Linke, and O. Fiehn. Visualizing plant
metabolomic correlation networks using clique-metabolite matrices.
Bioinformatics, 17(12):1198�1208, 2001.

The authors use graph theoretic ideas to reduce visual com-
plexity of metabolic network diagrams. Assigns edges be-
tween metabolites based on correlation of metabolite concen-
tration. This idea is unusual but may indeed in some cases
provide useful compression of data. Uses standard algorithm
for �nding all maximal cliques. These maximal cliques cor-
respond to metabolites that all vary together. Uses an inter-
esting approach that is very much like viewing the maximal-
clique/vertex matrix for easily visualizing all metabolites in a
clique and all cliques that contain a given vertex/metabolite.
� Cary Miller et al.

[63] J.R. Koza, G. Lanza W. Mydlowec, J. Yu, and M.A. Keane. Reverse
engineering of metabolic pathways from observed data using genetic
programming. In R.B. Altman, A.K. Dunker, L. Hunter, and T.E.
Klein, editors, Proceedings of the Paci�c Symposium on Biocomput-

ing (PSB), volume 6, pages 434�445, http://www-smi.stanford.edu/
projects/helix/psb01/, 2001. World Wide Web.

This paper demonstrates that that it is possible to auto-
matically create a network of chemical reactions from ob-
served time domain data. Genetic programming starts with
observed time domain. These concentrations of input sub-
stances can automatically create both the topology of the
network of chemical reactions. The rates of each reaction
with the network would bring concentration of the �nal prod-
uct of the automatically created network, which matches the
observed time-domain data. Speci�cally, genetic program-
ming automatically created metabolic pathways involved in
the phospholipid cycle and the synthesis and degradation of
ketone bodies.
� Felemon Belay

This paper discusses the possibility of automatically creating
a network of chemical reactions from observed time-domain



Mathematics Clinic Supplement 23

data using genetic programming. The paper walks through a
detailed example of creating a metabolic pathway from only
the time-domain concentration values of the �nal product.
This involves automatically creating both the topology of
the network and the sizing of the network of chemical reac-
tions. There is discussion of representing networks of chemi-
cal reactions with programming trees and some background
information on genetic programming.
� Amy Rulo

This paper introduces the feature of genetic programming
that demonstrates the ability to create networks that have
been generated by linear and nonlinear continuous-time dif-
ferential equations. The article describes the ability of ge-
netic programming to create a set of chemical reactions from
observed time-domain data. The ideal result is the creation
of metabolic pathways.
� Jennifer Phillips

The major principle addressed by this book is that genetic
programming is a method for automatically creating a com-
puter program whose behavior satis�es certain high-level re-
quirements. Genetic programming has been demonstrated
to work by authomatically creating both the topology and
sizing for analog electrical circuits composed for transistors,
capacitors, resistors, and other components merely by spec-
ifying the circuit's output.
� Olasumbo Olufunke Adesola

This discusses the application of genetic programming tech-
niques to automatically generate feasible metabolic path-
ways from observed time-domain data. Such programs start
with observed time-domain concentrations and automati-
cally produce a both the topology and reaction rates of the
underlying network of chemical reactions. The method pre-
sented in the paper establishes a representation of the in-
volved chemical reactions and applies genetic programming
methodologies to generate a population of improving path-
ways. These pathways are interpreted as analog electrical
circuits and evaluated for �tness using a well known circuit
simulation package.
� Tod Morrison

[64] G. Krauss. Biochemistry of Signal Transduction and Regulation. Wiley-
VCH, Weinheim, FRG, 2nd edition, 2001.
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This book is a must for everybody who wants to model signal
transduction pathways. It provides the user with necessary
facts and principles about signal transduction and regula-
tion. The only negative aspect of the book is that the liter-
ature list is not as extensive and almost only restricted to
review articles. Of special interest might be chapter 13 (cell
cycle) and chapter 15 (apoptosis).
� Jens Eberlein

[65] A. Kremling, T. Sauter, E. Bullinger, M. Ederer, F. Allgower, and
E. D. Gilles. Biosystems engineering: applying methods from systems
theory to biological systems. In T-M. Yi, M. Hucka, M. Morohashi,
and H. Kitanno, editors, Proceedings of the Second International Con-

ference of Systems Biology, http://www.icsb2001.org/toc.html, 2001.
World Wide Web.

This is a presentation of the application of the methods and
tools from system theory in the analysis and design of mathe-
matical models of biological systems. The author begins with
a brief historical introduction to the development of the �eld
of systems biology. He then proceeds to construct a math-
ematical model to simulate and analyze the cellular system
of E. coli by progressively combining submodels, based on
structured functional units, into higher aggregated models
structures. The system is then systematically perturbed to
reveal genes which are highly interconnected. Using the de-
scribed model, methods of analysis and validation are dis-
cussed and high level conclusions regarding the usefulness of
such an approach inferred.
� Tod Morrison

[66] Kyoto encyclopedia of genes and genomes (KEGG). World Wide Web,
http://www.genome.ad.jp/kegg/.

This database contains pictures of pathways, hyperlinked to
give information about the parts. Basic references to the lit-
erature are cited, and some are available as pdf or postscript
�les.

[67] S. Liang, S. Fuhrman, and R. Somogyi. REVEAL, a general re-
verse engineering algorithm for inference of genetic network architec-
tures. In R.B. Altman, A.K. Dunker, L. Hunter, and T.E. Klein, ed-
itors, Proceedings of the Paci�c Symposium on Biocomputing (PSB),
volume 3, pages 18�29, http://www-smi.stanford.edu/projects/helix/
psb98/, 1998. World Wide Web.
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The REVerse Engineering ALgorithm (REVEAL) was im-
plemented as a C program to infer a complex regulatory
network architecture from input/output patterns of its vari-
ables. The algorithm was generalized to include multi-state
models, essentially allowing direct application to realistic bi-
ological data sets. A genetic network analysis tools can be
designed based on generating model systems on which the
performance of the tools can be tested on. An example of
such model system is the Boolean network. In this network,
the wiring of the elements to one another correspond to func-
tional links between genes, and the rules determine the result
of a signaling interaction given a set of input values. Genes
are expressed as either o� or on, which results in binary el-
ements interacting according to Boolean rules.
� Olasumbo Olufunke Adesola

This article attempts to answer the question of whether it
is possible in principle to completely infer a complex regu-
latory network architecture from the input/output patterns
of its variables. Using state transition tables to represent
gene expression patterns, Information Theory (Shannon En-
tropy) is used to determine the wiring relationships of the
extended genetic network. A program called REVEAL does
this, enabling the inference of inputs which control genes in
the network.
� Rob Wilburn

[68] Ligand chemical database for enzyme reactions (LIGAND). World
Wide Web,http://www.genome.ad.jp/dbget/ligand.html.

This database is designed to provide the linkage between
chemical and biological aspects of life in the light of enzy-
matic reactions. There are three sections: ENZYME [25];
COMPOUND � a collection of metabolic compounds, in-
cluding substrates, products and inhibitors; and REAC-
TION � a collection of chemical reactions that appear in
the pathway diagrams of KEGG [66].

[69] R. Maimon and S. Browning. Diagrammatic notation and computa-
tional structure of gene networks. In Proceedings of the Second Inter-

national Conference on Systems Biology, pages 311�317, 2001.

This brings in a formal notation for gene networks. The no-
tations are trying to standardize a higher-level language for



26 Bibliography

genetic networks in this paper. At �rst, it describes the sim-
plest nouns, the atoms that are indivisible units of biologi-
cal function and three types of actions that are the simplest
verbs. And then it explains the linkbox that is the �rst com-
plex grammatical element in the notation and keeps explain-
ing about the likebox, the third elements that details sets of
objects which act similarly. Through the examples, this pa-
per proves the notation has two merits. The one is that it
can explain modules and individual reactions and the other
is that it is translated mechanically into a set of individual
reactions. As a result, the notation is much reasonable com-
paring to the current notation.
� Min Hong

[70] Y. Maki, D. Tominaga, M. Okamoto, S. Watanabe, and Y. Eguchi. De-
velopment of a system for the inference of large scale genetic networks.
In R.B. Altman, A.K. Dunker, L. Hunter, and T.E. Klein, editors, Pro-
ceedings of the Paci�c Symposium on Biocomputing (PSB), volume 6,
pages 446�458, http://www-smi.stanford.edu/projects/helix/psb01/,
2001. World Wide Web.

This paper presents an approach to the inference of interre-
lated mechanisms among genes in a genetic network based on
the analysis of gene expression patterns. The approach de-
veloped in this paper actually uses a combination of two pre-
viously developed methods. The �rst analysis is performed
by a static Boolean network model based on a multi-level di-
graph approach. The second uses a dynamic network model,
the S-system that relies on the analysis of temporal responses
of gene expression patterns against perturbations or internal
changes. The weakness in the Boolean network model is that
relations between genes that a�ect each other cannot be de-
termined. These genes are assigned to equivalence classes
and then the dynamic network model is used to determine
the relations within these equivalence classes. The Boolean
network model can infer large genetic networks (10,000+
genes) in less than a second, but it cannot determine the
relations between genes that belong to the same equivalence
classes. The dynamic model based on the S-system can infer
the network even if there are equivalence classes, but the run
time is O(n2) so this model is not practical to use with large
networks. The authors approach uses the Boolean network
model to reduce the size of the network into functional units
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that the dynamic model can solve in a �reasonable� amount
of time.
� Lance Lana et al.

[71] E. Martz. Beginner's Guide to Molecular Biology. World Wide Web,
http://www.iacr.bbsrc.ac.uk/notebook/courses/guide/, 2001.

This is a simpli�ed introduction, with online animations
to help understand mainstream topics in molecular biology.
(The animations are with RasMol, which is free software that
runs in an MS Windows environment.)

[72] M.L. Mavrovouniotis. Identi�cation of qualitatively feasible metabolic
pathways. In L.E. Hunter, editor, Arti�cial Intelligence and Molecular

Biology, pages 325�364, Cambridge, MA, 1993. MIT Press.

This chapter describes an algorithm for the synthesis of bio-
chemical pathways. Biochemical pathway synthesis is the
construction of pathways which produce certain target bio-
products, under partial constraints on the available reac-
tants, allowed by-products, etc. Given a set of stoichiomet-
ric constraints and a database of biochemical reactions, this
algorithm transforms an initial set of available bioreactions
into a �nal set of pathways by and iterative satisfaction of
constraints. After explaining the design of the algorithm, the
author presents a case study of its application to study of
the synthesis of biochemical pathways for the production of
lysine from glucose and ammonia.
� Tod Morrison

This article discusses the use of an AI method for �nding
quantitatively feasible metabolic pathways. In order to quan-
tify a pathway's feasibility, the method uses information on
the types and amounts of enzymes, ratios of metabolites,
and the likelihood of a reactions occurrence in a particular
direction within the pathway. The chapter discusses how the
AI algorithm works and gives an abstract problem as an ex-
ample.
� Rob Wilburn

[73] R. McEntire, P. Karp, N. Abernethy, D. Benton, G. Helt, M. DeJongh,
R. Kent, A. Kosky, S. Lewis, D. Hodnett, E. Neumann, F. Olken,
D. Pathak, P. Tarczy-Hornoch, L. Toldo, and T. Topaloglou. An eval-
uation of ontology exchange language for bioinformatics. In P. Bourne,
M. Gribskov, R. Altman, N. Jensen, D. Hope, T. Lengauer, J. Mitchell,
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E. Schee�, C. Smith, S. Strande, and H. Weissig, editors, Proceed-
ings of the Eighth Intelligent Systems for Molecular Biology Conference

(ISMB), pages 239�250, Menlo Park, CA, 2000. AAAI Press.

This paper compares some candidate ontology-exchange lan-
guages to �nd the one that best deals with a variety of issues.
Ontology exchange languages should exchange using a stan-
dardized form that has well-described syntax and semantics
to make the sharing of information e�ective. If the database
uses a well-de�ned ontology, then it can convey more accu-
rate nuances of purpose. On the other hand, coarsely-de�ned
ontologies will convey only super�cial facets of information.

This paper compares the following ontology exchange
languages: Ontolingua, CycL, OML/CKML, OPM,
XML/RDF, UML, ASN.1, and ODL with the following
ideal criteria: Language support and standardization, data
model/capabilities, performance, pragmatics, and connectiv-
ity. It turns out Ontolingua and OML/CKML have enough
expressivity, however, Ontolingua does not have XML ex-
pressions and OML is not a framed-based system, the au-
thor recommends a new language XOL (XML Ontology Lan-
guage) that has frame-based semantics with XML expres-
sions the author feels that XML is important due to the
proliferation of the web and the widespread availability of
parsers.
� Min Hong

[74] P. Mendes. Computer Simulation of the dynamics of biochemical path-

ways. PhD thesis, University of Wales, Institute of Biological Sciences,
Aberystwyth, Wales, 1994.

[75] P. Mendes. Modeling large scale biological systems from functional
genomic data: parameter estimation. In H. Kitano, editor, Foundations
of Systems Biology, pages 163�186, Cambridge, MA, 2001. MIT Press.

Since new data became available, Mendes states that simul-
taneous measurements of thousands of cellular components,
such as mRNA and proteins, can occur. When these se-
quences are put together, they form �movies� of the cellu-
lar machinery in action, and it should be possible to build
models to describe the dynamics. These models, according
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to Mendes, will be able to represent large numbers of bio-
chemical reactions at some level of detail.
� Felemon Belay

[76] P. Mendes and D. Kell. Non-linear optimization of biochemical path-
ways: applications to metabolic engineering and parameter estimation.
Bioinformatics, 14(10):869�883, 1998.

This article discusses the suitability of various optimization
methods, used as part of simulation software, to study the
kinetics of biochemical reactions. The authors focus on ana-
lyzing the ability of these algorithms to �nd global minima.
They recommend that a suite of diverse optimization meth-
ods should be available in simulation software, as no single
one performs best for all problems. They discuss how they
have implemented such a simulation-optimization strategy in
the biochemical kinetics simulator Gepasi (http://gepisi.dbs.
aber.as.uk/softw/Gepasi.html). They provide an overview of
optimization methods and discuss the importance of �nding
the global minimum. They also discuss computational issues
that arise from the nonlinearity. Applications and numerical
results are discussed for two areas: simulation of a hypo-
thetical branched biochemical pathway with conserved cofac-
tor and feedback, and parameter estimation. The following
methods are compared: L-BFGS-B, Levenberg-Marquardt,
Steepest descent, Simulated annealing, Multistart, Random
search, Truncated Newton, Evolutionary programming and
a genetic algorithm. Many of these methods can be imple-
mented without explicit calculation of derivatives.
� Rico Argentati

[77] G. Michal, editor. Biochemical Pathways: An Atlas of Biochemistry

and Molecular Biology. John Wiley & Sons, Heidelberg, FRG, 1999.

[78] MIT Biology Hypertextbook. Massachusetts Institute of Technol-
ogy, http://esg-www.mit.edu:8001/esgbio/7001main.html, latest edi-
tion, 2002.

This has undergone maturation since its �rst posting, and
it is a fairly complete introductory resource. The chapters
of most direct bene�t to understanding pathways are Chem-
istry Review, Large Molecules, Cell Biology, Enzyme Bio-
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the �eld of econometrics. The discussion on this chapter
on simultaneous equations gives a clearer view as to how
econometricians use this method and the limitations of this
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This paper covers the possibility of completely inferring com-
plex regulatory network architecture from input/output pat-
terns of its variables. This was investigated using the RE-
VEAL algorithm and binary models of genetic networks. The



34 Bibliography

paper goes into detail about how the algorithm works us-
ing M-analysis, mutual information measures, and gives the
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allowing direct application to realistic biological data sets.
� Amy Rulo

The BioJAKE program was created for the visualization,
creation and manipulation of metabolic pathways. It pro-
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bridoma looked at the conditions placed upon the stoichio-
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nization of biochemical entities: sub-cellular compart-
ment, cell type, tissue, organ, and organisms themselves
can be considered as a special type of compartment.
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