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Goal

To give a brief (two-day) 
overview of the emerging 

field of systems biology and 
bioengineering
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Schedule
• Lecture #1 Bringing Genomes to Life: 

– The Use of in silico Models
• Lecture #2 High-throughput Technology: 

– A (very) Brief Overview
• Lecture #3 Reconstruction Methods:

– Piecing together biochemical reaction networks
• Lecture #4 Representing Networks Mathematically:

– The Stoichiometric Matrix
• Lecture #5 Extreme Pathways: 

– Basic Concepts
• Lecture #6 Flux-balance Analysis

– Basic Concepts
• Lecture #7 Genome-scale Models: 

– Lessons Learned
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Bringing Genomes to Life:
The Use of in silico Models

Bernhard Palsson
Lecture #1

September 15, 2003
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Outline

1) Introduction to Systems 
Biology 

2) Constraint-based approach:  
Analyzing complex biological 
systems

3) Models driving experiments: 
Genome-scale models as 
hypotheses
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Introduction to Systems Biology
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Biology is now asking:
If every molecule in a 
cell is replaced over 
time, is it still the same 
cell?

If every cell in an 
organism is replaced 
over time, is it still 
the same organism?
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The Oracle of 
Delphi asked:

If every plank in a 
boat is replaced 
over time, is it still 
the same boat?
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The answer basically is ‘yes’

Thus, the interconnections of biological 
components--the ‘blueprint,’ the 

‘circuit diagrams’--of cells are taking 
center stage in biology: 

and thus... we have the emergence of 
systems biology
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Two key questions arise:
• What is the nature of the links between the 

components in a biological network?
– Molecular biology: basic chemistry
– Cell/tissue biology: “higher-order” chemistry
– Structural/topological properties of networks

• What are the functional states and properties of 
biological network?
– P/C nature of the intra-cellular environment
– Spatio-temporal organization 
– Near crystalline state
– Some Biological Network Properties:

• Self-assembly and selection at all levels in biology
• Definition of ‘self’ is fundamental in biology
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Basic links in molecular biology
• The prototypical transformations are bi-linear:

– X+Y <-> Z  (covalent change)
– X+Y <-> X:Y (association of molecules)

• Key properties
– Stoichiometry fixed and constrained by 

elemental and charge balancing
– Relative rates fixed by thermodynamics, but is 

condition dependent
– Absolute rate highly variable and manipulable by 

cells
• Cells cannot just form new links at will: candidate links are 

constrained by the basic rules of chemistry
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Absolute rates are key biological 
design variables

• Evolution -- by selection over time -- has discovered 
how “best” to perform a reaction

• The orientation of substrate molecules on a surface of 
an enzyme brings them into the right spatial 
relationship to increase (and fix) the probability of a 
reaction occurring

• “Similar” reactions” and evolution (zero to 
something)

From The Touchstone of Life, 
W.R. Lowenstein, 
Oxford Universiy Press, New York, 1999.
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Links to networks

• Reactions link together to form a network
• The basic structural features are bi-linear and they are a 

‘tangle of cycles’ representing key chemical properties
• As network size grows, the number or possible functional 

states grows faster than the number of components
• Multi-functionality of networks leads to multiple possible 

states (‘behaviors’ or ‘phenotypes’)
• Multiple possible phenotypes call for the selection of 

‘states’ (‘optimal’) based on network history and survival
• Built-in mechanisms (‘regulation’) are needed to choose 

(‘express’) the selected states 
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Components View

Component

Function

Time-dependent
Concentration

Compute Flux for 
Function

Systems View
Needed 

Homeostasis
Reaction 
Network

Steady State
Flux Map

S + E <−> X <−>E + P

Calculate k Calculate C

Kinetics determine CC useful for systems dynamics
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Some key features of biological 
networks

• They evolve--i.e., they are time-
variant
– Key difference from P/C sciences
– Principally through kinetics and 

changing available/active links
–

• They have a ‘sense of purpose’ 
(objective) which fundamentally is 
‘survival’
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The constraint-based approach 
(theory?) to analysis of 

complex biological systems

Are boundary conditions more 
important than  the model 
equations?
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E. coli
on a pin 

Alberts et al, 1st edition
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Modern Modeling Approaches

• Need to integrate diverse data 
types (genomic, trancriptomic, 
proteomic, metabolomic, 
phenomic,...)

• Must be easily scalable to cell or 
genome-scale

• Account for inherent biological 
uncertainty
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Constraints-based Analysis
How often have I said to you that 

when you have eliminated the 
impossible, whatever remains, 

however improbable, must be the 
truth?

–Sherlock Holmes, A Study in 
Scarlet
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Theory-based vs. Constraint-based models:
Single points vs. Solution spaces

• Incomplete knowledge
• Solution space

• Complete knowledge
• Solution a single point
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Constraint-Based Modeling Methods
“Thirteen 
years of 
constraint-
based 
model 
building of E. 
coli,” J. Bact 
May 2003

6. Full Phase Space Sampling
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Current Constraint-Based Models
• Haemophilus influenzae 362/488/343* JBC 1999
• Escherichia coli 695/720/436, PNAS 2000
• Helicobacter pylori 291/388/339, J. Bact 2002
• Saccharomyces cereviciae 957/1294/801. Gen. Res 2003
• Other metabolic networks have been reconstructed for: 

– Bacillus subtilis, 
– Streptococcus pneumoniae, 
– Pseudomonas aeruginosa, 
– Geobacter sulfurreducens, 
– Mycobacterium tuberculosis, 
– Anabaena, 
– Plasmodium falciparum.

*(genes/reaction/metabolites)
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Generations of constraints-based models: 
use of ‘omics’ data

• 1st generation 
– Hard constraints
– Determine capabilities (what)

• 2nd generation 
– Regulation of expression
– Determine choices (why)

• 3rd generation
– Regulation of activity 
– Determine trajectories (how)

• Genomics
– annotated sequence 
– legacy data

• Expression profiling
– transcriptomics 
– proteomic

• Concentration data
– metabolomics 
– proteomic
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Engineering Design

• Objective 
– separation of protein, building a bridge, designing a 

car, etc
• Constraints:

– geometry, materials, diffusion constants, cost, time
• Design envelope
• Optimize design using free design variables

– optimal engineering designs do evolve
– see Detroit’s industrial history museum
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Engineering vs. Biological Design

• Objective 
– separation of protein

• Constraints:
– Geometry
– Materials
– Diffusion constants

• Design envelope
• Optimize design 

using free design 
variables

• Objective
– Survival, growth, pH

• Constraints:
– Max fluxes
– Connectivity
– P/C factors

• Solution space
• Optimize design using 
kinetic and regulatory 
variables
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regulatory 
constraints;
self-imposed 
restraints

hard constraints
(P/C environment, etc.)

Imposition of combined constraints to produce
the “optimal” phenotype
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Biological Design

Regulation of expression:
shrinking solution space

Regulation of activity: location 
within a shrunk solution space
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Models driving experiments
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The optimal 
growth 
hypothesis

Complex biological processes: growth 
and adaptive evolution

Nature, Nov 2002
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Why non-optimal growth? 

Adaptive evolution
• E. coli K-12 MG1655 exhibits sub-
optimal growth on glycerol

• Adaptive evolution over 700 
generations more than doubles growth 
rate

• Adaptation is reproducible

• Expression profiling shows that a few 
dozen genes have >3x change in 
expression

Nature, Nov 2002



University of California, San Diego
Department of Bioengineering

Systems Biology Research Group
http://systemsbiology.ucsd.edu

Other lessons
BASIC SCIENCE
• E. coli can ‘learn’ new optimal behaviors in 500-1000 

generations
• E. coli has silent phenotypes, or alternative optimal 

solutions
• E. coli ‘forgets’
• E. coli has coupled objectives

ENGINEERING DESIGN
• E. coli knock-outs follow the same patterns
• E. coli phenotypes can be designed in a computer a priori 

and the designs ‘implemented’ through adaptive evolution
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• Change in expression -- Instantaneous 
– look up entry in ‘look-up-table’

• If ‘looked up’ solution is not the best one (Nature 420:186, 2002)
– then mutations & selection ensues to modify network properties 
– 500 -1000 generations or about 40 days

• Long-term: Pathway genesis & evolution (TIBS 28:336 2003)
– Enzyme recruitment for similar chemical functions
– Centered around highly-connected metabolites

• Longer-term:  modification of gene content (GR 13:1589 2003)
– Gene deletion (GD), horizontal gene transfer (HGT), de novo gene

genesis(GG)
– 3*GD = HGT + 2* GG

Mechanisms of (adaptive) Evolution:
multi-time scale process--some features
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Evolving knock-out strains

Probe gene usage in metabolic network
Full growth recovery should be achieved after 

deletion of genes with a reduced cost of zero

Design of strains
Metabolic phenotypes can be prospectively 

determined in silico
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wild type

KNO of structural gene

KNO of regulatory gene

growth and by-product
secretion

Knockout of a set of genes
Based on bi-linear optimization

Knockout of selected of genes
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The intracellular 
environment is 

very complex  and 
counter-intuitive

From The Machinery of Life, 
David S. Goodsell, 
Springer-Verlag, New York, 1993.

Viscosity ˜  1000 x H2O
Pressure (osmotic) <  150 atm

Electrical gradient ˜   300,000 V/cm
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P/C Considerations
• Thermal forces

– The special role of 
diffusion

– Molecular noise
• Spatial hindrances

– Structure of the cell and 
the genome 

– Compartmentalization 
and volume regulation

• Electro-chemical 
– Seems like a somewhat 

unexplored territory
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Diffusion is a dominant rate 
constraint

τ = l   / D
2
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Ultrastructure of the E. coli genome

•   Linear length of DNA = 1 mm = 1000 times cell size
•   Protein core
•   ~40-45 supercoiled loops of DNA radiate from central core

Brown, Genomes (1999)
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Periodicity in genome usage
•   Periodicity in E. coli
expression of ~600 genes
•   Appear to be distinct 6 regions 
of genome usage

Allen et al, J. Allen et al, J. BactBact 20032003
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A look inside 
E. coli

• DNA
– 1mm total (~200nm/ORF)

• Ribosomes
– 15-20 nm
– ~5 ribosomes / ORF

• tRNA
– 5 nm
– 200,000 / cell (10 

tRNA/ribosome)

Goodsell, The Machinery of Life (1998)
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Topobiology of E. coli Genome
• Nucleoid can be 

divided into ~36-42 
“coil-somes”
– 25 folds/coil
– ~ (200 nm)3

• Approximate 
composition per 
“coil-some”
– 500 ribosomes
– 5000 tRNA
– 10 kbp DNA (100 

ORFs)
– 70 mRNA
– 60 RNAP

~0.5-1 
micron
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Chromosome 
Segregation
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Genome-scale models as hypotheses in 
systems biology

• Hypothesis driven vs. discovery driven research
• Hypothesis represents ‘best guesses’ based on your current 
knowledge
• In silico models are the most compact representation of 
complex data sets 
• Thus they represent highly structured hypotheses
• Models, like hypotheses, are to be dis-proven
• Never dis-proven in their entirety, but in parts
• Models give emergent properties and thus represent 
hypotheses about biological (systems) functions
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Summary
• Systems biology and bioengineering is an emerging science

• Deals with the interaction of multiple components

• Many links form a network

• Moderately complex networks have many possible functional 
states

• Regulation selects “appropriate” states

• Genome-scale models have been constructed to describe whole 
cell functions

• In silico models will serve as hypothesis in systems biology


