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Outline

1) Introduction to reconstruction and genetic circuits
2) Reconstructing metabolic networks

- Components of metabolism
- Genome annotation
- Biochemical data
- Physiological data
- Mathematical modeling

3) Reconstructing regulatory networks
- Basics of regulation
- Bottom-up and Top -down Reconstruction

4) Reconstructing signal transduction networks
- Experimental methods

- Current reconstruction efforts
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Integrative
Approach
(Bioinformatics, 

Systems Science, 
modeling & 
simulation)

20th Century
Biology

Reconstructing Cellular Functions

21th Century
Biology

Reductionistic
Approach
(Genome Sequencing, 
DNA arrays, proteomics)

REDUCTIONISM REVERSED

It is thus becoming clear that we need to reverse the process on the left-hand 
side, and to study how these components interact to form complex systems.  

This poses the question, given the complete genomic sequence, is it possible to 
reconstruct the functions of a cellular or biological system?

The process of reconstructing the biological system from the reductionist 
information will rely on bioinformatics to identify the “parts catalog” if you 
will.  

However, the parts catalogue does not contain systemic functiona l 
information.  For example, listing all the parts of a car does not even begin to 
describe how an automobile works.  

Therefore, to understand multigenic functions, a systems science analysis is 
required.
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Central Dogma of  Molecular 
Biology

translation

Function

RNA
transcription

(reverse)

DNA Protein

THE CENTRAL DOGMA

This schema illustrates the central dogma of molecular biology as it was 
developed about 40 years ago. The DNA, a long thread like molecule of a 
specific base-pair sequence, carries the inherited information.  Short segments 
of the DNA molecule (called the open reading frames) are transcribed into a 
chemical relative, RNA, in the form of a message.  This message is then 
translated into protein, that in turn carry out individual biochemical functions 
in the cell.

This dogma has been around for many decades.  So what is new?  What is new 
is the fact that we can now characterize the entire DNA molecule (s) of an 
organism in detail, measure all the messages coming from the DNA at any 
given time, and assay for all the different protein molecules in a cell.

This central dogma is now expanding and being revised.  Proteins do not 
function in isolation.  Instead, they participate in multi-geneic functions that 
comprise cellular physiological behavior.  The central dogma of molecular 
biology is about to be revised and extended through the elucidation of these 
protein interaction networks and their quantitative systemic characterization.
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Dogma of  in silico Biology

Chemical 
properties

(reverse)
RNA

transcription

DNA Protein

translation

Pair-wise interactions Networks
Biological 
properties

THE DOGMA OF IN SILICO BIOLOGY

As was discussed briefly in the previous slide, the central dogma of molecular 
biology shows a direct link between protein structure and protein function 
without regard to protein-protein interactions.  Thus we are forced to move 
beyond the central dogma of molecular biology when trying to reconstruct 
cellular functions from the component list.  First we must identify the pair-
wise interactions between the individual gene products.  Then we must 
construct the networks that result from the totality of such pair-wise 
interactions.  There are many in vivo and in silico methods currently available 
to accomplish this task.  We will describe some of these in this lecture.

Then we wish to study the properties of these networks.  These properties are 
those of the whole and represent biological properties.  Example s include, 
redundancy, robustness, built in oscillations, etc.  These properties cannot be 
deduced from the components alone.

Some of the methods available for such analysis will be described in 
subsequent lectures.
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Expectation: A 
combination of in silico 

and in vitro methods will 
give arise to network 

construction

Nature Supplement, vol. 405: 823, 2000

BIOCHEMICAL REACTION NETWORK RECONSTRUCTION

Bioinformatics through genomics is giving us a detailed list of the components 
found in a cell.  We now face the challenge of piecing together how these 
components interact with one another.  For metabolism, this goal is achievable 
today.  Because of the work of dedicated biochemists for over seventy years, a 
wealth of information exists about metabolism.  Thus, for organisms with  a 
sequenced and annotated genome, genome-scale metabolic networks can be 
reconstructed.  It is anticipated that over the next 5 to 10 years we will achieve 
a similar level of capability with other cellular reaction networks.  These will 
include the reaction networks that underlie cell signaling, as well as cellular 
fate processes such as apoptosis, mitosis, and differentiation. Bioinformatics 
is thus beginning to move from the enumeration and characterization of 
individual components to piecing together the interactions between them, 
ultimately defining these reaction maps in great detail.
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coordinated function

From Genomics to Genetic 
Circuits

In
te

gr
at

ed
 fu

nc
tio

n
C

om
po

si
tio

n
St

ru
ct

ur
e

Genetic CircuitsGenetic Circuits
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mRNA

expression

ORF identification

ORF assignment

Gene ProductsGene Products

GenesGenes geneA geneDgeneB geneC

DNA SequenceDNA Sequence

A B C D

ACTGTCGAACTGGACTTCAGCTTGATCACGTCAATCGACTACGTAGTCAT

GENETIC CIRCUITS

The relationship between the genotype and the phenotype is complex, highly 
non- linear and cannot be predicted from simply cataloging and assigning gene 
functions to genes found in a genome. 

Since cellular functions rely on the coordinated activity of multiple gene 
products, the inter-relatedness and connectivity of these elements becomes 
critical. 

The coordinated action of multiple gene products can be viewed as a network, 
or a "GENETIC CIRCUIT,” which is the collection of different gene products 
that together are required to execute a particular function.

Therefore, if we are to understand how cellular functions operate, the function 
of every gene must be placed in the context of its role in attaining the set goals 
of a cellular function. 

This "holistic" approach to the study of cellular function centers around the 
concept of a genetic circuit, and is the philosophy behind much of the material 
in these notes.

The skill set that is required to carry out the integrative approach is quite 
different than the skill set required for the reductionistic approach.  It comes 
down to understanding information technology, systems science analysis, 
mathematical modeling and computer simulation.   This skill set currently is 
scarce and the material in this class is focused on developing those skills.
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Metabolism Transport Transcription Translation

Signal Transduction

Cell Division Cell Adhesion

Cell Differentiation

Cell Motion Cell Death

Mass & energyMass & energy Information TransferInformation Transfer Cell Fate ProcessesCell Fate Processes

Genetic CircuitsGenetic Circuits

Evolutionary
Dynamics

Gene Transfer
Therapeutic
Intervention

Metabolic 
Engineering

Cellular 
Engineering

Tissue 
Engineering

CLASSIFICATION OF GENETIC CIRCUITS

There are hundreds, and potentially thousands of genetic circuits found on 
animal genomes.  We can coarsely classify them into 3 categories.

•1.  Circuits that deal with mass and energy handling in the cell.  These genetic 
circuits describe metabolic and transport activity in cells.  Typically, about 
one-third of the genes found on a  genome relate to this activity. 
Understanding the function of the metabolic genetic circuits is fundamental to 
the field of metabolic engineering.

•2.  Circuits that deal with the processing of information.  Information 
processing in a cell includes the information found in the DNA base sequence, 
and how that information is transcribed, translated, and controlled.  The 
manipulation of these processes underlies the engineering of cells, such as 
engineering cell clones for the production of a particular protein.

•3.  Circuits that deal with the cellular fate processes in multi-cellular 
organisms.  These are the genetic circuits that drive apoptosis, mitosis, cell 
differentiation, and so forth.  This interaction between cells is fundamental to 
understanding the dynamic functions of tissues and the engineering thereof.  It 
should be noted that within this paradigm, gene transfer for gene therapy 
represents the re-tuning of a malfunctioning circuit.  Designing these circuits 
from scratch is unlikely to ever occur since much fine-tuning has taken place 
through the evolutionary process.
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Properties of Genetic Circuits

Characteristics:
• They are complex
• They are autonomous
• They execute particular functions
• They are flexible and redundant
• They have “emergent properties”
• They are conserved, but can adjust

Analysis methods:
• Bioinformatics
• Control theory
• Transport and kinetic theory
• Systems science
• Bifurcation analysis
• Evolutionary dynamics

Informatic, P/C, and biological properties

PROPERTIES OF GENETIC CIRCUITS
Genetic circuits have many interesting informatic and physico-chemical properties, some of 
which are outlined on this slide.  First, they are complex, and tend to be comprised of a few 
dozen gene products.  The complexity of genetic circuits will be analyzed through 
bioinformatics and is fundamentally an IT problem.  Secondly, gene circuits have physical-
chemical properties.  Once expressed, they are autonomous and function in response to their 
environment.  For instance, glycolysis , once expressed, when exposed to glucose will 
metabolize glucose to lactate.  It does so in a self-controlled manner. In other words, the 
interactions of the gene products at this level have a built -in control and regulatory structure.  
The gene products execute particular functions such as cell migration, transport of molecules 
in a vesicle, and so forth.  These processes could be described by basic transport phenomena 
and kinetic theory. 

Genetic circuits also have some very interesting biological properties.  First they are very 
flexible and redundant.  One can remove components of the circuits and they still maintain 
their function.  Second, they have emergent properties.  These are properties that emerge from 
the whole and are not derivable from the properties of the indiv idual parts.  Such properties are 
analyzed mathematically by a branch of mathematics known as bifu rcation analysis.  Finally, 
genetic circuits, once established,  are conserved with evolution.  For instance, once glycolysis
was developed, it stayed with cells throughout evolution and is found now in essentially all 
cells.  Another example are the genes that lay out the basic body plan that decides where the 
head, arms, and legs are, and so forth.  It has  been shown for instance, that a human circuit 
that lays out the body plan can be put into the fruit fly, and will function relatively normally.  
So the circuits that lay out the body plan are conserved.  In other words, the basic biochemical 
process may have been conserved, but how they are regulated and integrated into other cell 
functions is highly organism-specific.  Evolutionary dynamics are responsible for how these 
genetic circuits adjust over time.



10

University of California, San Diego
Department of Bioengineering

Systems Biology Research Group
http://systemsbiology.ucsd.edu

Two Key Steps

• Reconstruction of Networks
– Methods
– Network characteristics
– The reconstruction process

• Mathematical Modeling of Networks
– Topological
– Steady state
– Dynamic
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Reconstruction of Metabolic 
Networks
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Cellular Components of Metabolism

• Macro molecules
– Protein (Enzymes, structural components, molecular 

motors)
– Nucleic acids (DNA,RNA)
– Polysaccharides (Energy storage)

• Small molecules
– Organic

• Amino acids, nucleotides, sugars, fatty acids

– Inorganic ions

THE COMPONENTS OF A CELL

These basic cellular components are familiar to most students.  Cells basically 
have three major groups of macromolecules: proteins, nucleic acids, and 
polysaccharides.  In addition, fats and lipids are a major class of molecules in 
cells.  Cells also have a number of small molecules that can be organic or 
inorganic.  The organic small molecules are thevarious metabolites.  Some of 
these small molecules serve as the building block for the macromolecules. 
Proteins are made from amino acids, nucleic acids are made from nucleotides, 
and polysaccharides are made from sugars. 
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What do the components of life look 
like? 

From The Machinery of 
Life, David S. Goodsell,  
Springer-Verlag, New 
York, 1993.

Glucose

Ribosome

The 10 enzymes 
of glycolysis

Pyruvate 
dehydrogenase
complex

Actin

THE APPEARANCE OF CELLULAR COMPONENTS

An insightful book has been published by David Goodsell called ‘The 
Machinery of Life’ in which he draws the size and shape of the different 
cellular components to scale.  The relative sizes and shapes of these cellular 
components are very useful for the visualization of the intracellular processes 
shown on this slide.  For example, the size of the ten enzymes of glycolysis (l) 
can be compared to the size of glucose(b) to gain an understanding of the size 
of a protein relative to a metabolite on which it acts.

For those interested, David Goodsell has also published a great sequel to ‘The 
Machinery of Life,’ called ‘Our Molecular Nature.’
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View of metabolic gene products

These structurally complex protein carry out very 
specific biochemical reactions

From The Machinery of Life, David S. Goodsell, 
Springer-Verlag, New York, 1993.

ENZYMES AND SUBSTRATES

This slide shows what a metabolic gene product actually looks like.  Shown 
here is hexokinase, the first enzyme in glycolysis.  This complicated protein 
has an active site on which the actual chemical catalysis takes place.  The 
conversion of glucose to glucose-6 phosphate by using a phosphate group from 
ATP is shown in the insert on the slide.  ADP is formed in the process.
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Within this crowded environment, multiple gene 
products come together to form integrated 
functions. This slide shows to scale one of the
more important of such processes; the process 
of protein synthesis.

Integrated functions

From The Machinery of Life, David S. Goodsell, 
Springer-Verlag, New York, 1993.

GENETIC CIRCUITS

Within this complex intracellular milieu, with a relatively low number of each 
type of molecule, the genetic circuits operate.  The process of protein synthesis 
is illustrated in this slide.  All the components involved in this process 
including the ribosome and its subunits, the mRNA, the tRNA, and so forth, 
are shown here.  All of these must come together to translate the information 
on the mRNA into a protein sequence.  The process of protein synthesis 
operates at a high speed of about 15 amino acids per second in the intracellular 
milieu.  There are several of these molecular machines at work in E. coli at any 
given time, and all of them function flawlessly in this complex intracellular 
environment.  

Can you imagine how this complex process can be described in mathematical 
detail?
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Metabolic Model Reconstruction
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This is one more way of looking at the paradigm shift which 
has taken place in the biological sciences.  In the 20th century, biological 
science focused on reductionism, and  emphasized classification categorization, 
which is essentially breaking the  system down into manageable components, 
and investigating the components in detail.  Now, with computational tools 
and availability of completed databases, we are in the position to reconstruct 
the overall network from components.
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Genome-scale Metabolic Model Reconstruction

ORGANISM

Genome 
Annotation

Genome Annotation
- by homology, location

Network Reconstruction
Inferred Reactions
- indirect, inferred from 

biomass requirements

Inferred 
Reactions

Metabolic Model

BiochemistryBiochemical Data
- protein characterized

Cell
Physiology

Physiological Data
- indirect, pathway known

New Predictions
Emergent Properties

Quantitative
Analytical
Methods

Quantitative Analysis
- simulate cell behavior 
- drive experimental studies

In constructing a metabolic model, one begins by collecting all 
of the relevant information about an organism. Then one may add reactions to 
our network based on direct evidence, such as finding a gene in the genome 
annotation or finding legacy data where the protein is examined 
experimentally. Indirect cell physiological evidence, such as the known ability 
of the cell to produce an amino acid in vivo, may lead us to include reactions 
which “fill in the pathway” to produce that amino acid.  These reactions 
combine to produce a metabolic reconstruction.  Our next goal is to expand 
this network so that it can simulate cell behavior.  For this, the network must 
be able to produce or take up all of the necessary components of a biomass.  
We add the reactions necessary to fulfill the biomass requirements and call 
them “inferred reactions.”  This set of reactions comprises the metabolic 
model when combined with quantitative analytical methods, which enable us 
to simulate cell behavior and generate new predictions about the emergent 
properties of the system.  These are properties which emerge from the whole 
system and are not properties of the individual parts.
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“Thirteen years 
of constraint-
based 
model building 
of E. coli,” J. 
Bact May 2003
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mitochondriamitochondria

vacuolevacuole
nucleusnucleus

endoplasmic endoplasmic 
reticulumreticulum Golgi Golgi 

apparatusapparatus

peroxisomeperoxisome

cytosolcytosol

extracellular extracellular 
spacespace

Compartmentalization

- All cellular 
compartments are 
considered

- Flux and metabolic 
pools are balanced in 
each compartment 

- May need to infer 
transport reactions 
between compartments

All of the reactions in our bacterial models take place in either the cytosol or the extracellular space. However, 
when reconstructing metabolism in an eukaryotic organism, we must consider other intracellular compartments 
found within the cytosol. For example, there are 8 compartments included in our yeast model. In addition to the 
extracellular space and cytosol, these include the nucleus, which is the site of DNA replication, transcription and 
RNA processing; the mitochondria, where ATP is synthesized by oxidative phosphorylation; the vacuole, a 
storage compartment for various components, such as food particles and water; the Golgi apparatus, where 
proteins and lipids are modified, stored, and packaged; the peroxisome , where toxic compounds are degraded; and, 
finally, the endoplasmic reticulum, where many proteins are synthesized and modified, along with some lipid 
synthesis.

Developing a multi-compartmental models highlights the fact that some of the compartments are less well-
characterized than others. For example, experimental studies may show that an enzyme is localized to the 
membrane of endoplasmic reticulum, but it is unknown whether the catalytic site of this enzyme faces the lumen or 
the cytosol. In addition, even when parts of a pathway are known to occur across several organelles, there may be 
little information available on the localization of the compounds and how they are transported between 
compartments. Thus, a compartmentalized model may require us to infer these transport reactions.

Finally, compartmentalization introduces another level of complexity in maintaining a cell’s energy balance. 
Unlike the bacterial cell, where all of energy production and usage occurs in the cytosol, a eukaryotic model 
requires energy balance within each compartment. For instance, NADH and NADPH must be produced and 
consumed as needed to balance the redoxpotential within a compartment. ATP and protons also have an impact on 
the cell’s energy potential, and these metabolites must also be balanced within the compartment if they have no 
means of being transported across its membrane.
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Genome Annotation: how to
• Open Reading Frame (ORF) 

Identification
- Stop codons, GLIMMER, etc. See Topic 4.

• “Traditional” Annotation Methods
- Experimental (direct)
- Sequence homology
- Generally covers 40-70% of new genomes

• New Annotation Methods
- Protein-protein interactions
- Correlated mRNA expression levels
- Phylogenetic profile clustering
- Protein fusion
- Gene neighbors (operon clustering)
- Automation (more later)

ORFs are first identified, then assigned a function to each gene.  
This can be done through experimental methods (cloning, knockout ), or by 
using sequence homology to inferred functions.  These in silico methods can 
uncover 40-70% of genetic functions.  As explained earlier, there are also 
many new methods for genome annotation.  For example, functions may be 
inferred from protein-protein interactions, transcriptomics, phylogenetic
profiles, protein fusion, and operon clustering (for eukaryotes), to name but a 
few.  The automation of network reconstruction has also been developed to 
some extent, as will be discussed later.
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Genome Annotation: “putative”
Every gene 
annotation  is simply 
a hypothesishypothesis which 
must be continually 
re-evaluated 

However, the gene 
can be clonedcloned and 
functionally 
characterized

1. Blattner, F. R. et al. The complete genome sequence 
of Escherichia coli K-12. Science 277 , 1453-74 (1997).

2. Serres, M. H. et al. A functional update of the 
Escherichia coli K-12 genome. Genome Biol 2 (2001).

8621,632Unknown

1,306594Putative

2,2332,178Known

4,4014,404Genes

2001 21997 1Year

It can hardly be emphasized enough that every gene annotation 
is hypothetical and that annotation will always have to be re-evaluated.  One 
example is E. coli, whose annotation was recently updated by the Riley lab.  
As you can see, the newer version of the annotation has fewer genes, but more 
known and putative genes.  Additionally, for some genes the func tionality 
often must be re-assigned.  In other words, the annotation of a genome is far 
from being the “last word”, and in fact, as will be shown later in this lecture, 
model reconstruction is a powerful way of both curating a network and 
directing research in a powerful way to facilitate annotation and discovery.  
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Genome Databases: a “must-browse”

The Comprehensive Microbial Resource (CMR)

• 63 sequenced and annotated genomes 
• Single-genome analysis: 

– Genome overview, list by category (eg E.C.), 
analysis methods, searches

• Multi-genome analysis also available

http://www.tigr.org/tigr-scripts/CMR2/CMRHomePage.spl

There are several interesting databases around which give 
access to genomic data.  One of my favorites is the Comprehensive Microbial 
Resource (CMR), which currently provides tools for the analysis of 63 
annotated genome sequences, both singly and together.  The Institute for 
Genomic Research (TIGR) maintains this site very well and I used it as the 
main site when putting together the H. pylori model.
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Kyoto Encyclopedia 
of Genes and 

Genomes (KEGG)

Metabolic Pathway 
Reconstruction
– Templates

– Comparative

– Not all genes in the 
map are in the 
organism

http://www.genome.ad.jp/kegg/

One interesting way KEGG organizes its genomic information 
is by using these reaction network “maps.” The above map shows glycolysis.  
Arrows connect various metabolites to each other, indicating tha t one 
metabolite can be converted to another in a reaction.  The boxes which stand 
beside the arrows are the enzymes which catalyze these reactions.  

KEGG is another important network reconstruction database 
with genome annotation.  It uses the same maps for many organisms, so not all 
of the pathways shown in this map are actually available for H. pylori.  Some 
are for E. coli, for example.  The genes actually found in H. pylori, according 
to this map, are the ones which are highlighted in green.  This visual 
presentation method makes it easy to see at a glance which genes appear to be 
missing from the genome and also to compare organisms.  Although there is a 
lot of interface between databases such as KEGG and TIGR, I generally use 
KEGG primarily for organizational purposes and TIGR for my actua l genome 
annotation.  
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Reaction:

ATP + D-Glucose = 

ADP + D-Glucose 6-phosphate 

Enzyme: Glucokinase

Gene: glk 

Biochemical Data: Reactions

E.C.: 2.7.1.1 

Human ß-cell glk http://www.rcsb.org/pdb/

The next set of important data to integrate into our models is 
biochemical data, which focuses on reactions, their stoichiometry and whether 
or not they are reversible.  For example, the enzyme which catalyzes the above 
reaction, D-Glucose converting to D-Glucose-6-phosphate as ATP is 
converted to ADP, is called Glucokinase.  The gene which encodes this 
enzyme is commonly called glk, and the E.C. number which corresponds to 
the reaction is 2.7.1.1.  A picture of the Human beta cell glucokinase structure 
is shown on the right (found in the Protein Data Bank).

If we were trying to determine whether or not glycolysis 
occurred in H. pylori, we would search KEGG and TIGR for the relevant 
genes.  The gene glk would be found in both of these databases.  Once this 
gene had been positively identified, preferably by both web-based sources, we 
would add the enzyme that this gene encodes and include its corresponding 
reaction to our model.
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One gene, many reactions: tktA

Many genes, one reaction: frdABCD

From Genes to Reactions

Four subunits combine to form 
fumarate reductase enzyme, 
catalyzing

FUM + FADH2à SUCC + FAD

E. coli frdABCD http://www.rcsb.org/pdb/

One gene encodes transketolase I 
enzyme, catalyzing
R5P + X5P « T3P1 + S7P
E4P + X5P « T3P1 + F6P

Not all genes have a one-to-one relationship with their corresponding 
enzymes or reactions

When assigning genes to reactions and vice versa, it is 
important to remember that not all genes have a one-to-one relationship with 
their corresponding enzymes or reactions.  For example, many genes may 
encode subunits of a protein which catalyzes one reaction.  A beautiful 
example of this is the fumarate reductase shown at the right.  There are four 
subunits, frdA, frdB, frdC and frdD, without which the protein will not be able 
to catalyze its reaction.  

On the other hand, there are genes which encode so-called 
“promiscuous” enzymes which catalyze several reactions, such as 
transketolase I in the pentose phosphate pathway.  This gene product catalyzes 
the two reactions shown.
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E.C. Nomenclature

• Established so that enzyme 
reactions could be 
identified unambiguously

• Many reactions have 
ambiguous names

• Organism gene names are 
not standardized

• To Do: search for 
succinate dehydrogenase
and fumarate reductase

http://www.chem.qmul.ac.uk/iubmb/enzyme/

sdh

frd

Some of you may have wondered what E.C. numbers are.  They 
have been established to specify enzyme reactions unambiguously. This is 
essential because so many reactions have ambiguous names.  To prove this to 
yourselves, try going to the E.C. website and searching, first for succinate
dehydrogenase and then for fumarate reductase.  Both of these enzymes 
catalyze the same reaction, but in opposite directions. Some biochemists find 
that frd or sdh may be reversible at times.  As a result, when you type in 
succinate dehyrogenase you will find that it is often used to indicate either 
reaction.  Gene names have similar problems.  
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Trust the E.C. Nomenclature!

• Not widely available for 
other types of gene 
products (T.C. numbers 
are being developed) 

• Kudos to enzymologists
• Make sure to balance 

elements when writing 
reaction

EC 1 Oxidoreductases

EC 1.1 Acting on the CH-OH group of donors
EC 1.1.1 With NAD or NADP as acceptor
EC 1.1.2 With a cytochrome as acceptor
EC 1.1.3 With oxygen as acceptor
EC 1.1.4 With a disulfide as acceptor
EC 1.1.5 With a quinone or similar compound as acceptor
EC 1.1.99 With other acceptors

EC 1.2 Acting on the aldehyde or oxo group of donors
EC 1.2.1 With NAD or NADP as acceptor
EC 1.2.2 With a cytochrome as acceptor
EC 1.2.3 With oxygen as acceptor
EC 1.2.4 With a disulfide as acceptor
EC 1.2.7 With an iron-sulfur protein acceptor
EC 1.2.99 With other acceptors

EC 1.3 Acting on the CH-CH group of donors
EC 1.3.1 With NAD or NADP as acceptor
EC 1.3.2 With a cytochrome as acceptor
EC 1.3.3 With oxygen as acceptor
EC 1.3.5 With a quinone or related compound as acceptor
EC 1.3.7 With an iron-sulfur protein as acceptor

The enzymologists should be complimented for this effort, as it 
greatly simplifies our efforts.  Eventually similar nomenclatures will have to 
be worked out for all proteins in the cell.  Dr. Milton Saier has already initiated 
the process with T.C. numbers for transport proteins; however, much remains 
to be done.  

Another point is that because they are unique, once E.C. 
numbers have been connected with reactions in one organism, the resulting 
assignment may be linked to any other reconstruction effort where the 
organism is thought to catalyze the corresponding reaction.  Because they are 
standardized numbers, you can trust them to be the same across multiple 
organisms.
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EcoCyc
• E. coli specific
• Wealth of metabolic 

and regulatory data
• Pathways, similar to 

KEGG and GOLD
• Incorporates 

biochemical 
knowledge

• One of several 
organism-specific 
databases (e.g. 
MIPS, YPD for 
yeast)

http://ecocyc.org:1555/ECOLI/new-image?type=OVERVIEW

The important next step for biological databases will be to 
integrate genome and biochemical data.  One site that has done some of this is 
the EcoCyc database, which incorporates some biochemical knowledge.  Here 
is a frame from the site.  You can click on enzymes in these pathways to obtain 
more information about their properties.  EcoCyc is one of many organism-
specific databases which can help you; MIPS and YPD are two examples for 
yeast.  Search the Internet to locate databases for your particular organism.
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Organism-specific Textbooks

• Great starting point
• Broad view of the organism’s metabolism, 

biochemistry, physiology, uses, etc.

Finally, it should be mentioned that for many of the organisms of interest, 
fairly comprehensive textbooks have been written which include detailed 
descriptions of the organisms’ metabolism.  These books will give you an 
overview of the organism’s importance, metabolic features and important 
references, as well as physiology.  I still use the E. coli 2 vo lume set even in 
building models for other organisms, as it is the best-characterized model 
prokaryote.  (Note that “EcoSal”, a web-based and updated version of the 
Neidhardt classics, is due out in the next few months!)
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Literature Searches and PubMed

• As much metabolic biochemistry and physiology as you can 
find!

• Search by topic: “Amino Acids”, “Metabolism”, “Purines”
• Search by enzyme/gene: “pyruvate kinase”, “pykF”
• Usually helps to include species name of organism: “coli”, 

“pylori”
• Example: “pylori metaboli* purine*” (* = wild cards) 

– 4 hits, all relevant 
• Try using limits (e.g. Publication Type: Review)
• Check out “Preview/Index” tab for many helpful hints!

Literature searches are probably a basic to many of you, but 
they are covered lightly here because (1) they are vital to this kind of research 
and (2) most people don’t search as efficiently as they could – there is always 
more to learn!  The searches are vital because in constructing a network you 
will need as much data as you can find.  Some tips are listed here; for more, 
look at the “Preview/Index” tab in PubMed.
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Biochemical Data:
Curation and Expansion of the 

Network

Glucose G-6-P F-6-P FDP

H. pylori Glycolysis according to KEGG:

H. pylori Glycolysis according to Hoffman et al. (1996):

Glucose G-6-P F-6-P FDP

So why do we need biochemical data?  Although the model has 
been mostly determined using various computer databases to find annotated 
genes, it is not yet complete.  Careful study will show the absence of enzymes 
catalyzing reactions which most likely occur in the thriving organism.  In these 
cases, where the enzyme has not yet been identified, we review the relevant 
literature to see if various research groups have determined the presence or 
absence of particular enzymes.  For example, in the above case, both KEGG 
and TIGR give no indication that phosphofructokinase is found in H. pylori.  
This could mean that H. pylori is not able to produce 1,6-Fructosebisphosphate 
(FDP) from Glucose, although there may be other pathways by which FDP is 
produced.  Careful review of the literature reveals that the Phosphfructokinase 
enzyme may have been identified by Hoffman et. al. in 1996.  Other scientists, 
however, dispute this claim.  After thoroughly examining studies of H. pylori
metabolism, we will decide whether or not to include this enzyme and the 
reaction it catalyzes into our model.  Biochemical data is therefore 
fundamental to both curating and expanding the network.
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Physiological 
Information 
and Inferred 
Reactions: 

Filling in the Gaps 
based on indirect 

evidence

Even after we have searched the on- line databases and all of the 
relevant literature, there is still a high probability that several necessary 
reactions will be missing from the model.  This is because the ORFs for the 
genes in the genome have not yet been identified and/or linked to these 
reactions.  This is one of the most exciting parts of building a model, because 
we will decide, based on our own knowledge of how H. pylori grows, whether 
a gene is present simply because it must be present to for H. pylori to function 
as has been determined experimentally.  By “filling in the gaps” in this way, 
we have the potential to drive further genomic research, determining the 
presence of genes in silico.  
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Filling in the Gaps – an Example
• Experiments determine 

which amino acids are 
taken up by H. pylori vs. 
which can be produced in 
vivo

• Missing steps of amino 
acid biosynthesis are 
added if necessary on the 
basis of this 
physiological evidence

AA Reynolds Model
Ala - -
Arg - -
Asn + +
Asp + +
Cys + +
Gln + +
Glu + +
Gly + +
His - -
Ile - -
Leu - -
Lys + +
Met - -
Phe - -
Pro + +
Ser + +
Thr + +
Trp + +
Tyr + +
Val - -

Amino Acid Requirements

One example of this process is shown here.  The chart shows the amino acid 
requirements of H. pylori, as determined in vivo (left) and in silico (right).  A 
‘-’ indicates that the organism can not grow without this amino acid; a ‘+’ 
indicates that the amino acid is synthesized in vivo.  If the physiological data 
indicates that the amino acid is synthesized by the organism but the pathway 
(as based on genomic/biochemical data) is incomplete, then we add the 
necessary steps – very tentatively – on the basis of this indirect physiological 
evidence.
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Biomass Composition
• Indicates demands of 

the system (more detail 
in modeling section of 
class)

• Precursors may also be 
used for smaller 
networks 

• Approximation of 
Biomass composition 
for less-characterized 
organisms (H. pylori, 
H. influenzae) (trace)SUCCOA

1.1AKG

1.8OXA

3.7ACCOA

2.8PYR

0.5PEP

1.53PG

0.1GA3P

0.4E4P

0.9R5P

0.1F6P

0.2G6P

18.2NADPH

3.5NAD+

41.3ATP

Demand (mmol)Metabolite

There are other important physiological data to consider and 
find if possible.  One is the Biomass composition of the organism.  This is 
particularly important for the models constructed as part of the Genetic 
Circuits Research Group, as we assume for the purposes of our models that the 
network must be able to synthesize or transport all biomass components.  
Sometimes the precursors of growth may be used for simulation of smaller 
networks.  In many cases the biomass composition of an organism will not be 
available; for these, the biomass composition of a closely related organism 
may be used – for example, in modeling H. pylori and H. influenzae we 
assumed a biomass composition similar to that for E. coli.  This would not be 
acceptable in modeling S. cerevisiae.  Obviously, the best option is to 
experimentally determine the composition for the organism of interest.
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Other data: benchmarking, uptake rates
• Physiological data is 

also very important 
for 
benchmarking/testing 
your model

• Can the network 
reproduce simple 
physiological 
behaviors?

• Examples: mutant 
data, time courses of 
growth, etc.

• Usually some “fine-
tuning” will have to 
be made
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   Protein synthesis/ 0.4 Estimated
      degradation delay (hrs)
   Biomass scaling factor 1.3 Varma and Palsson, 1994
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Gene 0:00 8:00 8:27 (Fold Change)
aceA 0 1 1 20
aceB 0 1 1 --
acs 0 1 1 --
adhE 1 1 0 0.2
ptsG 1 1 0 0.2
ptsH 1 1 0 0.4
ptsI 1 1 0.4
crr 1 1 0 0.2
ppsA 0 0 1 10
pykF 1 1 0 0.5

Protein 0:00 7:36 8:03
Cra 0 0 1
CRP GLC AC AC
FadR 1 0 0
IclR 1 0 0
Mlc 0 1 1

Time

Time

Finally, it is important to obtain physiological data to try and
benchmark or test your model.  Can your reconstructed network reproduce 
simple physiological behaviors which have been observed experimentally?  If 
not, it needs to be improved!  I’ve included an example which shows time 
course growth, transcription, uptake and secretion data which has been 
compared to in silico predictions.  The agreement we see here leads me to trust 
the model in this circumstance.  If there wasn’t agreement, I would go back 
and try to determine why, incorporating any new findings into the model.  In 
many ways this process of benchmarking and iteratively improving the model 
is the beginning of constructing  a model, just as going over the first draft of a 
paper is the beginning of writing.  This step takes the most time and the most 
thought.
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Inferred Reactions

• Some reactions are included based on indirect 
physiological evidence (by inference)
– Assumption: the cell must be able to produce all 

biomass components to grow 
– Reactions are added if necessary
– Generally transporters, etc.
– Most tentative; should be examined more carefully

I mentioned at the beginning of the lecture that some reactions 
are included in these models based on modeling considerations rather than any 
experimental or genomic evidence.  We call these the “inferred” reactions 
because they are inferred based on indirect physiological evidence.  One 
example relates to the biomass composition.  As mentioned earlier, we assume 
that the cell must be able to produce all biomass components to grow for 
modeling purposes.  If a cell can not transport or synthesize necessary 
components, the necessary reactions must be added.  These are often transport 
proteins.  The inferred reactions are of course the most tentative in the model 
and should definitely be examined with the most scrutiny.  
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Confidence Levels
• How confident are we in each reaction thought 

to occur in our reconstruction?
– Most sure: direct experimentation (biochemical 

evidence)
– Somewhat sure: genome annotation, indirect 

experimentation (physiological evidence)
– Least sure: inferred reactions

• Solidify assertions with multiple types of 
evidence (e.g. physiological and annotation)

By now it is clear that not all reactions in the reconstruction are 
included with the same confidence levels.  Obviously the reactions in which 
we are most confident are those which have been demonstrated by direct 
experimentation – biochemical evidence.  We trust in the genome annotation 
and the physiological data somewhat less emphatically and the inferred 
reactions hardly at all.  The best way to build confidence in a reaction is to see 
if you can find multiple types of evidence to support your assertions.
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Mathematical Modeling: 
Components

• Create “parts list”
• Can study individual components (large/small, high/low flux, etc.)
• Can not say anything about integrated function

5
Isolated roads

G6P F6P

Isolated enzymes

1. List of 
components

pgi

Traffic 
Simulation

Cellular 
Simulation

Level of 
Analysis

5
Isolated roads

G6P F6P

Isolated enzymes

1. List of 
components

pgi

Traffic 
Simulation

Cellular 
Simulation

Level of 
Analysis

For an example, let’s say we wanted to model traffic patterns in
the city of San Diego, analogous to modeling flux distributions in a cell 
culture.  One way to start would be by characterizing each road in detail.  This 
would give us a list of “parts” or functions and would tell us interesting things 
about the components, such as a large or small road, the speed limit, etc.  
However, we would not be able to say anything about the integrated function 
of these parts.
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Mathematical Modeling: Maps

• Create “map”
• Can study some network properties (connectivity, neighbors, etc.)
• Can not simulate network behavior (travel time, growth rates, etc.)

Road map Metabolic map

2. Integration 
and qualitative 
analysis

Road map Metabolic map

2. Integration 
and qualitative 
analysis

The next step would be to integrate these components into a 
“map” – whether a road map or a metabolic map.  This enables us to tell some 
things about the system – can I get to Horton Plaza from UCSD? Can H. pylori 
make pyruvate given glucose in the environment? – which deal mostly with 
qualitative and/or primarily topological issues.  However, such a map can not 
simulate network behavior.  For example, you can not tell the travel time from 
a road map. 
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Mathematical Modeling: 
Simulation

• Create mathematical model
• Can simulate network behavior quantitatively 
• Some parameters are approximated (compare to travel time)

3. Mathematical 
modeling and  
quantitative 
analysis

Traffic patterns Flux distributions

Nutrients

Nucleosides

Amino Acids

Pyrimidines

Heme

Purines

Lipids

Cell Wall

Ions

Signaling 
Molecules Toxins
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Just a network alone isn’t enough.  For quantitative analysis 
purposes, using freeway  traffic as analogy, a roadmap can tell if a path exists 
from AàB, but couldn’t determine the travel time or volume.  One needs to 
know factors like weather, road conditions, time of the day, etc. Similarly to 
model cell behavior we need to incorporate many of the external factors which 
affect cells.  

However, to carry the analogy a bit further, anyone who has 
lived in San Diego for a while may somewhat easily predict trave l time from A 
to B based on a few more important parameters (e.g. time of day, approximate 
weather conditions) within a factor of 2.  This shows that not all the 
parameters need necessarily be known to have a good phenotypic model.  
Similarly, you will see later in the course that some of the details of the 
cellular “parts list” (such as kinetic information) are neglected so that systemic 
behavior may be described at a genome scale.
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Reconstructing regulatory 
networks

Topic 9 describes the process of reconstructing regulatory 
networks at the genome scale, which is a relatively new field even by “post-
genome age” standards. 
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Basics of Regulation
What is regulation and how does it 

affect cellular behavior?

1. Importance of accounting for regulation 
2. Types of cellular regulation
3. Transcriptional activators/repressors
4. Differences in eukaryotes
5. Common types of regulation

BASICS OF REGULATION

There are two subtopics we will cover: first, the basics of regulation for a 
general background, and then we will talk specifically about reconstruction.  
So, what is regulation and how does it affect cellular behavior? We will 
answer this question first, by addressing the importance of accounting for 
regulation in our models.  Next we will give a brief primer on regulation, 
beginning with types of cellular regulation, a description of transcriptional 
activators and repressors, some differences in regulation between prokaryotes 
and eukaryotes, and then mention some common types of transcriptional 
regulation exhibited by microbes.
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Why do we Care About Regulation?

Example: E. coli
–Estimated 400 regulatory genes

–178 regulatory and putative 
regulatory genes found in genome 
(1st pass)

–690 transcription units (contiguous 
genes with a common expression 
condition, promoter and terminator) 
identified in RegulonDB

–Will affect model predictions

Functional class Number % of total
Metabolism

Central intermediary metabolism 188 4.4%
Carbon compound catabolism 130 3.0%
Amino acid biosynthesis and metabolism 131 3.1%
Nucleotide biosynthesis and metabolism 58 1.4%
Fatty acid and phospholipid metabolism 48 1.1%
Biosynthesis of cofactors, prosthetic groups and carriers 103 2.4%
Energy Metabolism 243 5.7%
Putative enzymes 251 5.9%

Total Metabolism 1152 26.9%
Transport

Transport and binding proteins 281 6.6%
Putative transport proteins 146 3.4%

Total Transport 427 10.0%
Regulation

Regulatory function 45 1.0%
Putative regulatory proteins 133 3.1%

Total Regulation 178 4.2%
Structure

Cell structure 182 4.2%
Putative membrane proteins 13 0.3%
Putative structural proteins 42 1.0%

Total Structure 237 5.5%
Macromolecules

DNA replication, recombination, modification and repair 115 2.7%
Transcription, RNA synthesis, metabolism and modification 55 1.3%
Translation, posttranslational protein modification 182 4.2%

Total Macromolecules 352 8.2%
Phage, transposons, plasmids 87 2.0%
Cell processes (including adaptation, protection) 188 4.4%
Putative chaperones 9 0.2%
Other known genes 26 0.6%
Hypothetical, unclassified, unknown 1632 38.1%
Total 4288 100.0%

(simplified schema) (Blattner et al.)
Distribution of E. coli proteins among 22 functional groups 

Regulation has a significant 
effect on cell behavior

WHY REGULATION?

To begin: why do we care about regulation?  When building a mathematical 
model it is as important to know what one can neglect in a model as it is to 
know what to include.  Can we neglect regulation?  The answer is, perhaps 
under some conditions, but certainly not in all cases.  The reason is that 
regulation has a significant effect on cell behavior.  As an example I have 
shown here a table in which E. coli proteins where distributed among 22 
functional groups (from the first-draft K-12 annotation).  You can see how 
metabolism and transport accounts for a substantial number of the known 
genes.  Additionally, it is estimated that 400 (~10%) of the genes in E. coli
have transcriptional regulatory functions; of these 178 regulatory and putative 
regulatory genes have been found in the genome.  According to RegulonDB, a 
database we will discuss in more detail later, there are 690 transcription units 
(e.g. regulated genes or operons) which have been identified in this organism.  
Modeling these units will have a major effect on model predictions where 
regulatory effects have a dominant influence on metabolism.  I’ll add in 
passing that the effect of regulation is generally much greater in eukaryotes.
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How do Cells Regulate Metabolic 
Processes?

Effects on
mRNA
stability

co-stimulus

CellularCellular
metabolitesmetabolites

ActivityActivity

ProteinProtein

mRNAmRNA

GeneGene

Altered pools of 
metabolites

Altered activities and 
function

Altered abundance of 
proteins

Altered levels and 
expression of message

Altered transcription of 
target operons

Response regulator

Sensor

Stimulus

Post -translational
modification and

effects on
protein stability

An organism responds to an 
environmental stimulus 
with a coordinated series of 
linked events, as seen in the 
diagram at left.

Regulation can occur at any 
of these levels, and even 
between levels (i.e. 
regulators controlling other 
regulators) 

Understanding regulation is 
essential to predicting a 
cell’s behavior. 

LEVELS OF REGULATION

When we say “regulation” we could be including any of a number of 
regulatory processes implemented by cells, illustrated schematically here.  
Cells can regulate their behavior at the gene, mRNA transcript, protein, protein 
activity and metabolite level.  For the purposes of this discussion we are 
considering primarily transcriptional regulation, which is at the gene level.  In 
other words we are considering the case where a stimulus is sensed and the 
response is induction or repression of transcription of one or more genes in the 
DNA.  The changed concentration of the corresponding protein results in a 
new state and possibly a new behavior of the cell.
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Regulatory Networks 
How can we reconstruct metabolic 

networks and integrate them with what 
we know about metabolism?

1. Regulation vs. metabolism 
2. Bottom-up reconstruction
3. Top-down reconstruction
4. Modeling

RECONSTRUCTING REGULATORY NETWORKS

That concludes our overview of transcriptional regulation.  Our next subtopic 
is constructing regulatory networks.  How can we reconstruct metabolic 
networks and integrate them with what we know about metabolism? In 
covering this topic, we will compare regulation to metabolism and discuss how 
we can adapt our metabolic network reconstruction methods to regulatory 
network reconstruction, sometimes called the “bottom-up” approach because 
we are building the network from the known parts.  There is also a so-called 
“top-down” approach to reconstructing these networks, which attempts to infer 
the network from the transcriptomics data.  We will give you a brief 
introduction to that approach as well and finish with a few statements about 
modeling regulatory and combined metabolic/regulatory networks.
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Regulatory Network Reconstruction

Bottom-Up 
Reconstruction

Genome 
Annotation

Metabolic 
Biochemistry

Microbial 
Metabolic 

Model

Cell 
Physiology

Quantitative
Analytical
Methods

Modeling techniques

Cell and molecular biology

Transcriptome
Data

Top-Down 
Reconstruction

Microbial 
Regulatory 

Model

Combined 
Metabolic/Regulatory 

Model

New Independent Experimental 
Information

This diagram shows how we reconstruct regulatory networks, 
and you will notice that the process is similar in concept to the process of 
metabolic network reconstruction.  Again, we need to draw together the 
genomic, biochemical and physiological data, inferring functions where 
necessary.  However, in this case (for bottom-up reconstruction) we will rely 
mostly on biochemically characterized regulatory proteins and their 
corresponding genes.  Rather than including metabolic reactions, we will 
include regulatory rules, for example “gene abcD is transcribed if regulatory 
protein ProT is active” and “regulatory protein Prot is active if there is oxygen 
in the extracellular environment”.  These rules can be represented using 
Boolean logic, kinetic theory and the like.  

The metabolic network may be constructed as usual and now the two networks 
may be analyzed separately or together with analytical methods as a 
metabolic/regulatory model.  Once again, such a model will make predictions 
about the behavior and emergent properties of the system which should be 
seen as hypotheses which must be tested experimentally.
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Bottom-up 
Reconstruction ORGANISM

Genome 
Annotation

Network Reconstruction

Inferred 
Reactions

Biochemistry
Cell

Physiology

RegulatoryRegulatory
ModelModel

Analytical
Methods

MetabolicMetabolic
ModelModel

New Predictions
Emergent Properties

Similar to Metabolic 
Reconstruction!

•Relies mostly on 
Biochemical data 

•Gene biochemistry is in 
the form of regulatory  
rules 

•Operons, etc. may be 
identified and included

•Qualitative analysis 
(often Boolean)

•Metabolic reconstruction 
is as usual

•Both models must be 
integrated

BOTTOM-UP RECONSTRUCTION

However, it is possible to reconstruct regulatory networks, given the 
information we have, and the process is similar in concept to the process of 
metabolic network reconstruction.  Again, we need to draw together the 
genomic, biochemical and physiological data, inferring functions where 
necessary.  However, in this case (for bottom-up reconstruction) we will rely 
mostly on biochemically characterized regulatory proteins and their 
corresponding genes.  Rather than including metabolic reactions, we will 
include regulatory rules, for example “gene abcD is transcribed if regulatory 
protein ProT is active” and “regulatory protein Prot is active if there is oxygen 
in the extracellular environment”.  These rules can be represented using 
Boolean logic, kinetic theory and the like.  

The metabolic network may be constructed as usual and now the two networks 
may be analyzed separately or together with analytical methods as a 
metabolic/regulatory model.  Once again, such a model will make predictions 
about the behavior and emergent properties of the system which should be 
seen as hypotheses which must be tested experimentally.
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Issues in Reconstruction

• How to represent regulatory information?
– Is transcription regulation Boolean (switch-like) or continuous?

(Biggar SR and Crabtree GR EMBO J 20:3167 (2001))

– Should transcription be thought of as a stochastic or determinis tic 
process?

• What constitutes significant regulation?
– Many extracellular signals can affect expression level of a gene
– Which signal are actually physiologically significant?

• Problems with experimental data in the literature:
– Experiments done under different conditions (e.g. strain 

background)

– Typically experimentalists concentrate on studying well-known 
TF/target pairs in great detail

ISSUES IN REGULATORY RECONSTRUCTION

Because reconstructing regulatory networks in the genome (or in fact any) 
scale is such a young field there are still many unresolved issues. A major 
issue is how regulatory information should be represented – this is especially 
relevant with regards to what type of models are built based on the regulatory 
information. In these slides as well as in most of the genetics literature the 
assumption is usually made that a gene is either transcribed or not, i.e. 
regulation is assumed to be switch like (or Boolean). However, it is well 
known by biochemists (but maybe not by geneticists?) that regulatory 
processes are in essence no different from other biochemical processes and 
that different magnitudes of incoming signals can cause different levels of 
transcriptional activity. This issue is illuminated in the following paper:
Biggar SR, Crabtree GR
Cell signaling can direct either binary or graded transcriptional responses.
EMBO J. 2001 Jun 15;20(12):3167-76.
Another issue relevant to regulatory reconstruction is what is considered to be 
a significant regulatory interaction. In many cases multiple signals can 
regulate the transcription of one gene, but some of these signals only play a 
modulatory role. These signal are not capable of changing  transcriptional 
activity on their own and only act in the presence of other stronger signals. A 
third problem is how experimental data in the literature should be interpreted. 
For example studies on transcriptional regulation in vitro may not be very 
useful, because they do not account for other regulatory signals present in vivo. 
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Top-down reconstruction
• Problems with bottom-up reconstruction:

– Many (most?) TF targets are not characterized
– Tedious process, because informative databases are rare

• Alternative approach: Utilize data from well-designed 
high-throughput experiments to reverse-engineer (or 
“back-calculate”) regulatory circuits

• Potentially useful data: 
– Gene expression profiles for wild type and deletion strains 

under appropriate conditions
– Location analysis (ChIP-Chip) data on transcription factor 

binding sites
– Promoter sequence data and possibly consensus binding 

sites for TFs

TOP-DOWN RECONSTUCTION

In addition to the issues discussed in the previous slide that are common to any 
approach to reconstructing and modeling regulatory networks there are a 
couple of specific problems with the bottom-up (literature-based) approach. 
The first is due to the fact that up to very recent years targets for transcription 
factors were usually identified one gene at a time. While this ensures very low 
false positive rates, it also means that most relevant targets for many 
transcription factors have not been identified. The second problem is the 
general lack of structured databases on transcriptional regulation, which makes 
the actual reconstruction process exceedingly time-consuming.

An alternative approach to the bottom-up approach has emerged in the last few 
years primarily due to the availability of large-scale gene expression profiling 
data. This approach, which we call top-down reconstruction, is based on the 
idea that since we know the “outputs” of the complex regulatory circuit in the 
form of gene expression profiles, we should be able to reconstruct the 
underlying circuit solely from this data. Although gene expression data clearly 
is useful for this task it is not the only type of data that could potentially be 
utilized. Additional useful data sets are location analysis (or ChIP-Chip) data, 
which describes genome-wide binding sites of TFs, and promoter sequence 
data (the region upstream of the transcription start site), which can be used to 
computationally identify binding sites for transcription factors. 
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Methods for top-down 
reconstruction

Goals: 
• Integrate all the possible data 

including known targets for TFs
• Predict new targets for TFs (network 

structure)
• Predict strength/direction of 

regulation (model parameters)

Different approaches:
•Dynamical systems modelsà Systems identification
•Boolean network modelsà Combinatorial optimization
•Bayesian network modelsà Statistical model fitting

For reviews see De Jong H J Comp Biol 9:67 (2002) or D’haeseleer et al. 
Bioinformatics 16:707 (2000)

Segal E et al. RECOMB 2002

METHODS FOR TOP-DOWN RECONSTRUCTION

The overall goals of the top-down reconstruction process is to integrate and 
synthesize all the data sets described in the previous slide and use the integrated 
data set to: (1) Predict new targets for TFs (or describe the network structure) ane 
(2) Predict the strength/direction of regulation for each TF/target pair (or 
estimate/fit model parameters).
There have been many different approaches proposed for the top-down 
reconstruction task. Each approach is based on proposing a different type of model 
for the regulatory network and developing methods for fitting the model to the 
observed data. Typical approaches include: (1) Dynamical systems models (e.g. 
linear and nonlinear models) for with the model fitting is known as systems 
identification, (2) Boolean network models where the model fitting is usually done 
by searching through the space of possible network structures us ing combinatorial 
approaches, and (3) Bayesian network models (or more generally graphical 
statistical models), which will be described in more detain in the next slide.
de Jong H
Modeling and simulation of genetic regulatory systems: a literature review.
J Comput Biol. 2002;9(1):67-103
D'haeseleer P, Liang S, Somogyi R
Genetic network inference: from co-expression clustering to reverse engineering .
Bioinformatics. 2000 Aug;16(8):707-26.
Segal E, Barash Y, Simon I, Friedman N, Koller D
From Promoter Sequence to Expression: A Probabilistic Framework
Proceedings of the 6th International Conference on Research in Computational Molecular Biology 
(RECOMB) 2002 
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Bayesian network models
• Used to describe complex statistical 

dependencies between variables 
(expression levels of genes)

• A natural representation for networks 
where the available data is noisy (such as 
gene expression data)

• Two main features:
– Network structure (Who regulates 

who?)
– Parameters (How strong is regulation?)

• Can be used to:
– Score possible network models
– Search for the optimal model

A B

C

1

0

1

0

B

1-q1q2q1q21

1-q2q21

1-q1q10

0.01.00

P(C=1)P(C=0)A

p(xC|xA,xB)

Noisy-OR gate
Murphy and Mian (1999)

Friedman N et al. J Comp Biol 7:601 (2000)
Hartemink AJ et al. Pac Symp Biocomp 437 (2002)

BAYESIAN NETWORK APPROACHES FOR TOP-DOWN RECONSTRUCTION

Actually all the modeling strategies described in the previous slide can be considered to be 
a subclass of a general statistical modeling framework – graphical models. Bayesian 
(belief) networks are a particular type of graphical model that can be used to describe 
conditional independence relations between expression levels of genes (typically 
discretized e.g. to a binary representation of gene expression). These networks are a very 
natural representation for regulatory circuits, where there is uncertainty associated with 
both the network structure and parameters due to both biological and experimental noise in 
the available data. There are two main features to a Bayesian ne twork – network structure 
and parameters describing statistical dependencies between genes. Both structure and 
parameters can be learned from data, but learning structure is much more difficult than 
learning parameters given a structure (see Murphy and Mian 1999). However, in most 
reconstruction approaches network structure is exactly what one wants to find and hence 
different kinds of optimization approaches have been used to search for the best structure 
given the data (see papers below for two approaches).
Friedman N, LinialM, Nachman I, Pe'er D
Using Bayesian networks to analyze expression data.
J Comput Biol. 2000;7(3-4):601-20.
Hartemink AJ, Gifford DK, Jaakkola TS, Young RA
Combining location and expression data for principled discovery of genetic regulatory network models.
Pac Symp Biocomput. 2002;:437-49.
Murphy K and Mian S
Modelling Gene Expression Data using Dynamic Bayesian Networks 
UC Berkeley CS Technical Report 1999
http://www.cs.berkeley.edu/~murphyk/papers.html
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Issues with top-down 
reconstruction

• Very complex models and algorithms are required to reverse-engineer 
regulatory circuits
– Computational issues: Explosion in the number of structures
– Model complexity issues: Explosion in the number of parameters
– Optimality issues: Only locally optimal circuits can be found

• Data is not usually available in sufficient quantities or with appropriate 
quality – computational and experimental people usually don’t work 
together

• Most models require discretizing gene expression data
• Currently these methods are primarily used to create hypotheses about 

potential targets of TFs

ISSUES WITH TOP-DOWN RECONSTRUCTION

In addition to the issues mentioned in conjunction with the bottom-down 
reconstruction approach, the top-down approach suffers from its own 
weaknesses. The major problem is that since the underlying regulatory circuit 
is potentially very complex, the types of models and algorithms required for 
top-down reconstruction also tend to be very complex (in fact these are 
probably some of the most complex statistical models ever constructed). While 
this complexity is not a problem as such it results in a few practical problems 
in fitting the model that are detailed in the slide. A central problem is the 
explosion in the number of different alternative models (both structure and 
parameters) to be considered, which requires both large amounts of 
sufficiently high-quality experimental data and efficient methods for learning 
models from data. Recently, however, some of the best statistical modeling 
people have started collaborating with some of the best biology groups that are 
capable of generating large quantities of high-quality data. This should lead in 
rapid improvement in both the methods for top-down reconstruction and in 
new biological knowledge from the reconstruction efforts. 
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Combined Regulatory/Metabolic 
Modeling

• Physiological time 
courses (growth, 
uptake/secretion)

• Microarray simulation
• Effects of gene 

deletions on cellular 
behavior
– More genes may be 

evaluated
– More accurate overall
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COMBINED REGULATORY AND METABOLIC MODELING

Here is another sneak preview, showing what kinds of calculations are possible 
using the regulated flux balance approach and the regulated E. coli metabolic 
network in a simulation of the glucose- lactose diauxic shift mentioned earlier.  
Using this approach it is possible to generate time courses of growth as well as 
glucose and lactose uptake.  It is also possible to infer concentrations of 
proteins and even to simulate, qualitatively, gene expression data.  We can 
also simulate the effects of gene deletions on cellular behavior with more 
accuracy and broader scope.
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Reconstructing
signal transduction networks
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Background
• Signal transduction involves the 

transfer of signals from the external 
environment to generate an internal 
response
– opening of an ion channel in response 

to the binding of a ligand to a surface 
receptor

– receptor-ligand induction of 
intracellular phosphorylation events 
and subsequent gene regulation

– Example of G-protein-induced 
transcription of CREB genes

• Highly connected with regulatory  and 
metabolic processes
– Example of cAMP and PIP3

• Important for essentially all multi-
cellular functions in higher level 
organisms

From Alberts et al. Mol. 
Biol. of Cell 2002

Signal transduction is a broad field of cell biology.  It involves the 
“transduction” of a “signal” from the outside of the cell to the inside of the 
cell.  When the cell encounters an extra cellular signal (i.e. the binding of a 
growth factor to an extracellular receptor) a sequence of events takes place.  
These can be as simple as the opening of an ion channel (i.e. acetylcholine 
triggers the influx of calcium ions) or as complex as a highly interconnected 
network of protein phosphorylations.  In brief, signal transduction often 
involves the following steps: (1) the binding of a ligand to an extracellular 
receptor, (2) the subsequent phosphorylation of an intracellular enzyme, (3) 
amplification and passage of the signal, and (4) the resultant change in cellular 
function (i.e. up-regulation of a gene).

Various classification schemes exist for the different components of signal 
transduction.
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Background
mechanisms

• There are three basic types of mechanisms for signal 
transfer
– secretion and reception of soluble molecules

• for example, a soluble protein (i.e. chemokine) is secreted from one 
cell and acts as an attractant for another cell

– cell-ECM interactions
• for example, cells can sense and respond to mechanical forces via 

integrins which bind to extracellular matrix proteins

– cell-cell contact (i.e. via gap junctions)
• for example, ion movement between cells, as often seen in cardiac 

myocytes during excitation

The mechanisms of signal transfer are often grouped into three categories: (1) 
soluble molecules like growth factors and chemokines are secreted from one 
cell and received by another, (2) cell and extracellular matrix interactions form 
another class of signal processing.  An example of this type can be seen in the 
cells involved in blood vessels.  Stresses and strains experienced by these cells 
can be sensed through integrin bonds to extracellular matrix proteins. (3) Cell-
cell interactions involve signals like ion movement.  This is often seen in 
cardiac tissue as a depolarization (which leads to muscle contraction) of one 
cell and then is passed on to another.
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Background
receptors and responses

• The receptors involved in signal transduction are 
often classified into three groups.

– ion-channel linked receptors
• ligand binds and triggers conformational 

change which opens channels to ion influx
• Regulate ion balances

– G-protein-coupled receptors
• receptor is coupled to an intracellular GTP 

binding and hydrolyzing domain
• Can trigger transcriptional response

– enzyme-linked receptors (i.e. tyrosine 
kinases)

• receptor is linked to an intracellular domain 
that has enzymatic activity

• Can trigger transcriptional response

From Alberts, Molecular Biology of the Cell, 2002.

From Lodish, Molecular Cell Biology, 2000

There are also three classes of receptors involved in signal transduction: (1) G 
protein-coupled receptors, where a receptor is coupled to an intracellular GTP 
binding and hydrolyzing domain, (2) ion-channel linked receptors, where a 
bound ligand triggers the opening of an ion channel, and (3) enzyme-linked 
receptors, where the receptor also has an enzymatic domain such as tyrosine 
kinases.

With this background, we can now look at what efforts are underway to 
reconstruct signaling networks.
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Experimental methods
genomic approaches

• DNA microarray expression profiling
– Determine input/output relationships (e.g. in the presence of particular 

ligands, what genes are up/down-regulated)
– Roberts, et al. (2000) Science, 287: 873-880

• ChIP (chromatin immunoprecipitation) chip
– Cells lysed with transcription factors bound to appropriate DNA
– DNA fragments with bound TFs are immunoprecipiated
– Bound DNA fragments are recovered, labeled, and hybridized to a DNA 

chip

– Identifies all bound targets
– Ren, et al. (2000) Science, 290:2306-2309
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Experimental methods
proteomic approaches

• Yeast two-hybrid screens
– Protein of interest is fused to a DNA binding 

protein
– Target proteins fused to transcription activation 

domain
– When two proteins interact then corresponding 

gene is activated
– Uetz, et al (2000), Nature, 403:623-627

• Affinity purification and mass spectroscopy
– Protein -coding sequence is fused to a coding 

sequence of an affinity tag
– Protein complexes are then purified and identified 

with gel electrophoresis and mass spectroscopy
– Gavin, et al. (2002), Nature, 415:141-147

• Protein Microarrays
– 2 types: antibody arrays, non-antibody arrays
– Zhu, et al. (2001), Science, 293: 2101-2105

Yeast two-hybrid system.  From Griffiths, et al. 
Modern Genetic Analysis
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Experimental methods
microscopy approaches

• General FRET (fluorescence resonance energy 
transfer) approaches
(a) FRET between a donor and an acceptor
(b) FRET used to identify conformational changes
(c) Protein ‘transducer’ – ligand binding causes a large 

change in distance between acceptor and donor 
fluorophores

(d) domain-antibody sensor

• Visualization of protein phosphorylation using 
phocuses in which the fluorescence changes upon 
kinase and phosphatase activity

Sato, et al., Nat. Biotech, March 2002

Hahn and Toutchkine, Curr. Op. Cell Biol. 2002

First, we need accurate and high-throughput experimental techniques to gather 
the information necessary for the reconstruction.  To date, there has not been 
much success in this field.  However, recent reports indicate that there is 
increasing interest and efforts in this field.  Here, we give two recent papers 
that detail protocols for determining the information that will are necessary for 
the reconstruction of signaling networks.

First, in a Feb. 2002, a group reported the use of polychromatic flow cytometry 
for measuring multiple active kinase states in a cell.  In March2002, another 
group reported the development of “phocuses,” or genetically encoded 
fluorescent indicators, for visualizing phosphorylation in a cell.  Here we see a 
schematic of how a “phocus” emits a different wavelength of light depending 
on the phosphorylation state of the substrate.

These approaches serve as representative examples of the experimental 
methods that are being developed and that are necessary to have the 
information necessary to reconstruct signaling networks.
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Current reconstruction and analysis efforts
results

• Examples
– Pathways (connect input to output) àMAP kinases
– Modules (self-contained) à NF-kB signaling system
– Nodes (all interactions) à PIP3 signaling

• None of these approaches can completely account for emergent properties as they each neglect 
interactions between other pathways/modules.

– Analysis of subsystems cannot be “summed up” to get the whole (Holme, et al. Bioinformatics, 2003)

• Isolated analyses can lead to misleading results

Meyer and Teruel, Trends Cell Biol. Feb. 2003
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Current reconstruction efforts
pathways

• Asthagiri and Lauffenburger, 
Biotech. Prog. 2001
– Kinetic model of MAPK pathway
– Analysis of feedback mechanisms
– Model predictions verified with 

experimental data

Asthagiri and Lauffenburger, Biotech. Prog. 2001

With the necessary techniques beginning to surface, some work has been done 
to take the next step…the actual reconstruction.  To date, most work has been 
limited to analyses at a small scale, i.e. analyzing the dynamics of a particular 
receptor-ligand complex.  However, with the high degree of interconnection 
that exists in signaling networks, it is important to remember that such isolated 
studies have limited applicability.

One recent study made an attempt to look at a signaling network at a much 
broader scale.  They analyzed the concentrations of 94 compounds after 
stimulation of the EGF receptor.  The study accounted for rates of the various 
reactions before and after internalization of the EGF receptor. While the 
results of this one growth factor did present some interesting points, the 
analysis leads us to consider how one would model the entire signal 
transduction process of a cell.  For such an analysis some important 
considerations have to be made.
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Current reconstruction efforts
modules (1)

• Hoffman, et al. Science, 8 Nov. 2002
– IkB is an inhibitor of NFkB
– Degradation of IkB leads to nuclear 

localization of NFkB which is a transcription 
factor

– 30 independent model parameters
– Mice were engineered with IkB gene 

deletions and were used to validate model 
predictions

• Schoeberl, et al. Nat. Biotech, April 2002
– Model the dynamics of the MAP kinase 

cascade activated by surface and internalized
EGF receptors

– model calculates the concentration of 94 
compounds after EGF stimulation

– the model accounts for reaction rates before 
and after internalization of the receptor

Schoeberl, Nat. Biotech, April 2002

Hoffman, et al., Science, 8 Nov. 2002
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Current reconstruction efforts
modules (2)

• Bhalla and Iyengar, 
Science, 1999
– Kinetic analyses of 

multiple signaling modules
– Includes EGF receptor, 

MAPK cascade, G-protein 
cycle, and others

Bhalla and Iyengar, Science, 1999
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Current reconstruction efforts
nodes

• Schuster et al. Eur. J. 
Biochem. 2002
– Review of models that analyze 

the role calcium plays in 
multiple signaling functions

– Kinetic analyses of multiple 
calcium concentrations

Schuster et al., Eur. J. Biochem. 2002
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Current reconstruction efforts
integrated

• Alliance for Cellular Signaling
– www-signaling-gateway.org

• Multi-institutional effort to 
characterize all the signaling 
pathways in two model systems

– B lymphocytes – important for 
immunological function

– Cardiac myocyte – contractile cell 
of the heart

• Available data
– Recent literature listing

– Molecule pages
• Comprehensive descriptions of 

proteins

– Ligand Screens
• Determine which inputs are 

important for cell physiology

– Yeast-two hybrid screens
• Describe protein-protein 

interactions www.signaling-gateway.org
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Current reconstruction efforts
integrated – stoichiometric formalism

• Stoichiometric formalism ensures that all 
connections are described

– Allows for application of developed methods

• Prototypic network
– 24 reactions

– Incorporates multifunctionality seen in many 
signaling networks (e.g. multiple ligands 
binding to the same receptor)

– Serves as a test bed for developing modeling 
approaches

L

ATP

S

ADP

S_p

T

W W_p

T_p

bindLR

LRpS

SpT

TpW

L2

R2

ATP

S2

ADP

S2_p

T2

W 2 W2_p

T2_p

bindL2R2

L2R2pS2

S2pT2

T2pW2S

T

S2

T2

L3

R3

ATP

S3

ADP

S3_p

T3

W 3 W3_p

T3_p

bindL3R3

L3R3pS3

S3pT3

T3pW3

S3

T3

R

L4

bindL4R

R2

L5

bindL5R2

ATP S

ADP S_p

L3R3pS L3R3

ATP S2

ADP S2_p

LRpS2 LR

ATP T

ADP T_p

L2R2pT L2R2

T3 T3_p

S2_p S2pW S2

W
W_p

T3_p T3T3pW
n ligands:1 receptor

n sig. mol.:1 receptor
1 sig. mol.: n 2ndary sig. mol.

R

S2T3pWW2
W2

W

S2_p

T3_p

S 2

T3

W2_p

W_p

SWpW2W3
W2

W3

S_p

W_p

S2

T3

W2_p

W_p

W2_W3_ppW2_p W3_p+
2W_W3_ppp2 W_p W3_p+

+ WW2W3pppW2_p W3_pW_p +
formWW2W3

formW2W3

form2WW3

multiple interacting 
transcription factors

formation of transcription factor complexes

: Internal to system

: Input to system

: Output of system

WW2W3pppWW2W3pppW_pW_p W2_pW2_p W3_pW3_p 2W_W3_ppp2W_W3_ppp W2_W3_ppW2_W3_pp

output of system for 
regulatory control

Papin and Palsson, in review

Schindler, J Clin Inv. 2002

JAK/STAT network
– 211 reactions

– 30 growth factors
– Example of particular issues that arise with    

reconstruction efforts
•Are JAKs constitutively associated with the 
receptors?
•Do the STATs dimerize at the receptor or in 
the cytosol?

With the necessary techniques beginning to surface, some work has been done 
to take the next step…the actual reconstruction.  To date, most work has been 
limited to analyses at a small scale, i.e. analyzing the dynamics of a particular 
receptor-ligand complex.  However, with the high degree of interconnection 
that exists in signaling networks, it is important to remember that such isolated 
studies have limited applicability.

One recent study made an attempt to look at a signaling network at a much 
broader scale.  They analyzed the concentrations of 94 compounds after 
stimulation of the EGF receptor.  The study accounted for rates of the various 
reactions before and after internalization of the EGF receptor. While the 
results of this one growth factor did present some interesting points, the 
analysis leads us to consider how one would model the entire signal 
transduction process of a cell.  For such an analysis some important 
considerations have to be made.
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A new generation of large-scale 
cellular models

• Data-driven
• Based on large organism-specific databases 
• Scalable to whole-cell or genome-scale
• capable of integrating diverse experimental data types 

(genomic, transcriptomic, location analysis, proteomic, 
metabolomic, and phenomic data) 

• Capable of accounting for inherent biological uncertainty 

The new generation of large and comprehensive models of complete cellular 
functions are: 1) data-driven, 2) based on large organism-specific databases, 3) 
scalable to whole-cell or genome-scale, 4) capable of integrating diverse 
experimental data types (genomic, transcriptomic, location analysis, 
proteomic, metabolomic, and phenomic data), and 5) capable of accounting for 
inherent biological uncertainty. It is important to note that these post-genomic 
era models are not expected to be able to compute cell functions with the same 
precision as we are used to in the disciplines of chemistry, physics, or 
engineering (i.e. the traditional “process”-type models based on the theory of 
reaction kinetics and other physico-chemical principles). These requirements 
necessitate a paradigm shift in the way large-scale in silico models are 
constructed. 
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Summary
• The cells are mostly composed of water and macromolecules with simple 

metabolites forming only a small fraction.  Although present in small 
amounts, the number of simple metabolites is large, around 1000, making 
the network of metabolic reactions very complex

• Metabolic networks can be reconstructed based on readily available 
information

• Issues in network reconstruction can be addressed by building such models 
in an iterative process

• Regulation can have a dominant effect on cellular behavior
• Reconstruction of regulatory networks is similar to metabolic network 

reconstruction but has notable differences
• Incorporation of regulatory networks with metabolic models will lead to 

models of broader scope and more accurate predictions
• Novel signaling molecules and interactions between signaling molecules 

continue to be discovered; we do not yet have a complete map of all 
signaling systems

• Signaling networks are highly interconnected

To summarize this topic, we have basically covered three 
issues:  first, metabolic networks can be reconstructed based on readily 
available genomic, biochemical and physiological information.  These 
networks can be incorporated into genome-scale models which simulate 
cellular behavior, and the issues – false or missing reactions – may be 
addressed by building such models in an iterative process.  Our next topic will 
be regulatory networks. 
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