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Outline

1) The stoichiometric matrix
- Constructing the S-matrix
- Flux vectors
- Connectivity

2) Topological properties and 
SVD of S
- 4 fundamental subspaces of S
- Singular value decomposition of S

3) The two null spaces of S: 
Pools and pathways
- Open systems
- Closed systems N(S)
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Stoichiometric Coefficients
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H +h

• Integral numbers

• Universal biochemical constants
• Constants: time-invariant

chemical reaction: aaA + A + ccC C vvii eeE + E + hhHH
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Representation as a column 
in a matrix:

EACH COLUMN IN THE STOICHIOMETRIC MATRIX 
CORRESPONDS TO A PARTICUALR METABOLIC BIOCHEMICAL 

REACTION

The stoichiometric coefficients: They are integers (a,c,e,h in the example 
given) that represent the number of molecules of chemical species (A,C,E,H in 
the examples) that are transformed in this particular chemical reaction. These 
coefficients are constants (i.e. are not condition dependent, that is functions of 
temperature, pressure, pH, etc).  Further they are biologically universal,  that is 
the same metabolic reaction proceeds the same way in all cells; for instance 
hexokinase always catalyzes the reaction:

Glucose + ATP --> Glucose-6-phosphate + ADP

Formation of a column in S:  Each metabolite has a row in the stoichiometric 
matrix, and each reaction has a column.  The stoichiometric coefficients are 
used to form a column, with the stoichiometric coefficient that corresponds to a 
particular metabolite appearing in the row to which it corresponds.  If a 
metabolite is formed by the reaction, the coefficient has a positive sign, if it is 
consumed by the reaction, the stoichiometric coefficient appears with a 
negative sign.  All other rows (corresponding to metabolites that do not 
participate in the reaction) are zero.  The stoichiometric coefficients are usually 
unity (i.e. 1 or –1). The reactions in biochemical networks are mostly linear 
(i.e. one substrate) or bilinear (i.e. two substrates). Reactions of higher order 
are rare and in general all the reaction can be described using linear or bilinear 



4

University of California, San Diego
Department of Bioengineering

Systems Biology Research Group
http://systemsbiology.ucsd.edu

All Elements Must be Balanced During a 
Chemical Reaction

GLC + ATP GLC + ATP G6P + ADPG6P + ADP

C

H

O

P

N

D =

All elements have to balance during a chemical conversion 

(i.e. the number of C, H, O, etc. has to be equal on both sides of 
the reaction equation).

The elemental balance of a stoichiometric reaction vector can be checked 
using the elemental matrix, D.

Example: Biochemistry textbook definition of glucokinase:

-1

-1

1

1

S =

v1

v1

GLC

ATP

G6P

ADP

6 10 6     10

12 13 11     13

6 13 9     10

0 3 1       2

0 5 0       5

GLC  ATP  G6P ADP 

ELEMENTAL BALANCE

All chemical reactions have to be elementally balanced. That is, the number of 
carbons, hydrogens, oxygens, etc. had to be equal on both sides of a chemical 
reaction. This can be check using an elemental matrix, D. For example, 
biochemistry textbook definition of gluckinase is:

GLC + ATP ® G6P + ADP.

We can construct an element matrix D that contains the chemical elements as 
its rows and compounds as its columns. For example, we know that glucose has 
6 carbons, 12 hydrogen, and 6 oxygen. The stoichiometric matrix of 
glucokinase reaction is also shown. S has to be orthogonal to D and we will 
check whether or not that is the case.
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Elemental Balancing During Chemical Reactions

GLC + ATP GLC + ATP G6P + ADPG6P + ADP + H+ H

DS =

-1

-1

1

1

0

-1

0

0

0

=

6 10 6     10

12 13 11     13

6 13 9     10

0 3 1       2

0 5 0       5

The H+ row is not balanced ® a proton is missing on the right 
hand side:

The stoichiometric reaction vector must be orthogonal to all the
rows in D.

Example continued:

C

H

O

P

N

ELEMENTAL BALANCE

When we multiply D and S, we see that all the elements are zero except 
hydrogen. Here the matrix shows a hydrogen atom disappears during this 
chemical conversion. Therefore, we know that we are missing a hydrogen at 
the right hand side. The stoichiometric matrix will then be changed based on 
this balancing process.
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Charge Balance in the Stoichiometric Matrix

Similar to the elemental balancing, electric charge must also be
conserved:

ES = 0
E – Electric charge matrix

Example:
Superoxide dismutase reaction 2 O2

- + 2 H+ ® H2O2 + O2

-1   1     0     0 

-2
-2
1
1

= 0

E = e-
O2 H    H 2O2 O2 -2

-2
1
1

S =

-1   1     0     0 

CHARGE BALANCING

The total electric charge is also conserved in a biochemical reaction. For 
example for a superoxide dismutase reaction, we can write an electric charge 
matrix in which atomic charges of the compounds are shown. E is also 
orthogonal to S and when they are multiplied, the product should be zero if the
S is balanced also for electrons.
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3 0       0       3      0

4 1 1       6      0

3 0 0       3      0 

0      1       0       0      1

Moiety Balance in the Stoichiometric Matrix
Biochemical moieties such as the adenyl or NAD groups are also 
conserved in stoichiometric matrices:

TS = 0
T – Biochemical moiety matrix

Example: lactate dehydrogenase

PYR + PYR + NADNAD--H + H H + H LAC + LAC + NADNAD
v1

TS =

-1

-1

-1

1

1

0

0

0

0

=
C

H

O

NAD

PYR  NADH   H     LAC   NAD

MOEITY BALANCING

It is also possible to define chemical compounds by their chemical moieties and 
not elemental composition. For example, chemical moieties such as NAD, 
adenyl group, methyl group, and like, can be define to simplify the chemical 
balancing in S. For example in lactate dehyrogenase reaction, we can treat 
NAD as one conserved group. When we multiply this matrix to S, the product, 
as before, is zero which means that S is balanced for carbon, hydrogen, oxygen, 
and NAD.
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From the Genes to the Stoichiometric Matrix:
Compiling all the reaction vectors

vA vBC vD1 vD2

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

S =

One gene
one enzyme
one reaction

Two genes
one enzyme
one reaction

One gene
one enzyme

two reactions

No. of genes

No. of enzyme 
complexes

No. of enzyme
catalyzed reactions

gene A

enzyme A

gene B   gene C

enzyme complex B/C

gene D

enzyme D

THE NUMBER OF REACTIONS IN A METABOLIC GENOTYPE IS 
NOT THE SAME AS THE NUMBER OF GENES IN THE GENOTYPE

There is not a one-to-one correspondence between the number of genes that are 
associated with metabolism and the number of chemical transforma tions that 
take place.  This difference is due to several factors.  

First, many enzymes are oligomeric complexes that contain more than one 
protein chain. These complexes are formed by non-stoichiometric binding, or 
association of several different protein molecules.  Hemoglobin, being a 
tetramer of two alpha and two beta globins is perhaps the best know example of 
a protein oligomer.

Second, enzymes can catalyze  more than one chemical reaction.  This feature 
is often referred to as substrate promiscuity.  These chemical transformations 
tend to be similar.

These features give rise to a different number of genes from the number of 
enzymes (or enzyme complexes) and the number of chemical reactions that 
take place.  All of these situations can be accounted for, however, with the 
stoichiometric matrix as illustrated.
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Many Enzymes – One Reaction

Reactions catalyzed 
by > 1 Enzyme:
E. coli 
Enzs Rxns
2 55
3 12
4 1

Homology or ease of 
evolutionary 
“invention”?

~60% of isozymes in 
E. coli exhibit 
sequence similarity
(Ouzonis and Karp 
2000)

vA vD vD

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

No. of genes

No. of enzyme 
complexes

No. of enzyme
catalyzed reactions

S =

gene A

enzyme A

One gene
one enzyme
one reaction

gene B     gene C

enzyme B  enzyme C

Two genes
two enzymes
one reaction

MANY ENZYMES – ONE REACTION

Many enzymes catalyze the same biochemical reaction. For example, E. coli
has 2 enzymes that catalyze 55 reactions, 3 enzymes that catalyze 12 reactions, 
and 4 enzymes that catalyze the same reaction. When several enzyme catalyze 
the same biochemical reaction, the same reaction is entered in the 
stoichiometric matrix multiple times (i.e. the same reaction is entered four 
times for the last case in E. coli). 
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One Enzyme – Many Reactions

Enzymes that 
catalyze 
> 1 Reaction:

100 multifunctional 
enzymes identified 
in EcoCyc – up to 9 
reactions catalyzed

This implies that 
genome annotation 
projects are 
underpredicting 
multifunctional 
proteins.

(Ouzonis and Karp 
2000)

vA vBC vD1 vD2

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

No. of genes

No. of enzyme 
complexes

No. of enzyme
catalyzed reactions

S =

gene A

enzyme A

One gene
one enzyme
one reaction

gene B

enzyme B

One gene
one enzyme

two reactions

gene D

enzyme D

ONE ENZYME – MANY REACTIONS

Conversely to what was shown on the previous slide, there are enzymes that 
can catalyze many different reactions.  Thus a gene can give rise to many 
columns in the stoichiometric matrix.  In the extreme case, in EcoCyc there is 
an enzyme found that can catalyze 9 different reactions in E. coli.  If such a 
gene is removed from the genome, all 9 columns disappear from the 
stoichiometric matrix.
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The Full Stoichiometric Matrix

S int Sexch

Internal 
reactions

Exchange
reactions

External metabolites

S =
Internal metabolites

v1

x1 x2

‘closed’

S int

v1

x1 x2

b1 b2

‘open’

Sexch

v1

x1 x2

b1 b2

X1,ext X2,ext

‘closed’

S tot

S tot

A matter of drawing “system boundary”

0

THE FULL STOICHIOMETRIC MATRIX

The full stoichiometric matrix is shown in this slide.  It contains m internal 
metabolites, and n internal reactions.  The first n columns represent the 
internal reactions, and the first m rows represents the internal metabolites. The 
mxn portion of the stoichiometric matrix can thus be thought as all the 
reactions that occur in the cell, Sint. The stoichiometric matrix may also contain 
exchange reactions too. If we want to compartmentalize the cell into different 
organelles we can also partition the internal reactions into different 
compartments such as mitochondrial and cytosolic. In addition to the internal 
reactions, we can add the exchange reactions. This allow us to transfer 
metabolites in and out of the cell boundary, Sexch. The exchange fluxes connect 
the inside metabolites of the cell to the outside metabolites.  Thus, there is an 
equal number of external metabolites to the number of transmembrane
reactions. If the outside metabolites are also included in the stoichiometric 
matrix then the system can be thought as a closed system (e.g. in a fermentor
system) and S is Stot.
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Partitioning of the Flux Vector into Internal 
and External (Exchange) Fluxes

• External fluxes are those fluxes that flow across the cellular 
boundary.  

– These are denoted by b i. These fluxes are often accessible to 
measurement or can be estimated based on experimental 
data.  The sign convention adopted for these fluxes is that 
they are positive if mass is flowing out of the cell.

– Internal fluxes are those that take place with in the cell 
(within our system boundary).  

– These fluxes are hard to measure, but often we will know 
their maximum value.

PARTITIONING THE FLUX VECTOR

We draw a systems boundary around the metabolic system in which we are 
interested.  Thus, there will be reactions that take place within the system and 
those that exchange molecules with the surroundings.  We partition the flux 
vector accordingly.

Normally, the system boundary is drawn such that the metabolic system being 
considered is the entire metabolic system in a cell.  Then the system boundary 
effectively becomes the cell membrane.  In other cases we may be interested in 
an organelle, such as the mitochondrion, and we will draw our system boundary 
around it.  In other cases, we draw system boundaries around certain sectors of 
metabolism, such as the fueling reactions, or the amino acid synthetic 
pathways.  In such cases, the system boundary is conceptual and not physical.

We also partition the system because we can assign values for some of the 
fluxes (e.g. the exchange flux), and calculate the internal state using the given 
values.

The concept of a ‘system boundary’ is frequently used in the physical and 
engineering sciences, while for life scientists reading these no tes, it  may be a 
new one.  It may take some getting used to.
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Chemical Reactions vs. Fluxes Through Them
The columns of the stoichiometric matrix represent the reactions

(n in number)
The actual reaction rates, or the fluxes that take place through

these reaction are denoted by a v
The assignment of a flux through a reaction can be performed by 

a simple matrix multiplication
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Example:
1 . A  + 2 . B v 1 . C

METABOLIC REACTIONS AND THE FLUXES THROUGH THEM

The annotated sequence and biochemical knowledge of the metabolic enzymes 
lead to the definition of the stoichiometric matrix.  Each column in this matrix 
represents a particular metabolic reaction.  However, the flux through a 
reaction is highly dependent on what the cell is doing.  For instance, if an 
amino acid is available to the cell, it will get imported and no t synthesized.  
Although the cell is capable of carrying out all the reactions that lead to the 
synthesis of the amino acid, they are not used.  The flux through them is zero. 
Later we will see how the cell regulates flux (either by kinetic means or by 
regulation of gene expression), but for now we introduce the product of the 
stoichiometric matrix and the flux vector.  The matrix is a constant, while the 
flux vector is a variable.

It is also important to note the difference between reactions and fluxes. Every 
column of S is a chemical reaction with a defined and set values. The fluxes 
however are the values that represent the activity of the reactions and indicates 
how much is going through them.
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Connectivity properties of the stoichiometric matrix

S11 • • • • • • • • S 1 n

• •

• •

• •

S m 1 • • • • • • • • S mn
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Ji= the number of reactions
in which a 
metabolite participates

Ij = the number of metabolites
that participate in a reaction∑

=

=
m

1i
ijj SI

SOME CONNECTIVITY PROPERTIES OF HE STOICHIOMETRIC 
MATRIX

As illustrated above, the stoichiometric matrix is a connectivity matrix that 
connects all the metabolites in a defined metabolic system.  We now introduce 
some of its connectivity properties:

1.  The participation number.  Metabolites can participate in several metabolic 
reactions. The number of metabolic reactions that a metabolite participates in 
can be obtained by simply summing up the number of  non-zero elements in the 
row that corresponds to the metabolite. Note that all internal metabolites must 
have a participation number of two or more. If not there is a dead end in the 
network. This feature can be used to curate and diagnose genome annotation, as 
being either incomplete or erroneous. External metabolites typically will have 
only a single reaction associated with them, namely membrane transport.

2. The number of molecules participating in a particular metabolic reaction can 
be obtained by simply summing up the absolute value of all the stoichiometric 
coefficients that appear in a column. The most frequent number is 4.
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Metabolite Connectivity in Genome-Scale 
Stoichiometric Matrices

Metabolite connectivity of E. coli, H. influenzae, H. pylori, and 
S. cerevisiae and S. cerevisiae

1
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100

1000

1 10 100 1000
Metabolites No.

N
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E. coli
S. cerevisiae

H. influenzae
H. pylori

ATP 160 ATP 115 ATP 80 Hext 225
PI 140 PI 103 ADP 65 ATP 174
ADP 137 ADP 102 PI 60 ADP 140
Hext 86 CO2 40 PPI 38 PI 123
CO2 63 PPI 40 CO2 36 CO2 70
PPI 56 NADP 32 NADP 34 PPI 68
PYR 53 NADPH 31 NADPH 33 NAD 61
GLU 48 GLU 30 GLU 24 NADP 60
NAD 48 NAD 25 CoA 20 NADH 56
NADH 43 PYR 23 NH3 18 NADPH 56
NADP 41 NADH 22 NAD 16 GLU 53
NH3 41 NH3 22 PYR 16 NH3 49

E. coli H. influenzae H. pylori S. cerevisiae

METABOLITE CONNECTIVITY

Metabolite connectivity of four microorganisms E. coli, H. influenzae, H. 
pylroi, and S. cerevisiae are shown here. Some of the metabolites participate in 
a large number of reactions. For example ATP participate in more than 160 
reactions in E. coli and S. cerevisiae. The concentration of these metabolites 
are very important since any changes in them affects many reactions. There are 
also metabolites that participate in two reactions. These constitute the main 
connectivity number in the network. Note that the participation number of 
exchange reactions is one since only one metabolite is involved in these 
reactions. 

The connectivity of metabolites on a log-log graphs was first shown by 
Edwards et. al. for the metabolic network of H. influenzae. Other groups have 
also demonstrated that networks exhibiting this type of connectivity are scale-
free and many networks in nature show similar characteristics. 
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Topological Properties and 
Singular Value Decomposition of S
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N(A)

x

Rn Rm

0 0

b

Amxn

R(A^ ) R(A )

N(A^)

domain co-domain

Matrix as a Linear Map: 
The Four Fundamental Subspaces of a Matrix

Null Space

Row Space Column Space

Left Null Space

Ax = b

LINEAR MAPPING

Every matrix multiplied to a vector x which produces a vector b is a linear 
transformation that maps the x to b. This linear transformation corresponds to 
the mapping of the domain which contains two subspaces (null space and row 
space) to the co-domain or range, which also has two subspaces (left null space 
and column space).
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N(S)

v

vdyn

vss

Rn Rm

0 0

dt
d

dyn

x
C =

Cconsv

C

Smxn

R(S) C(S)

L(S)N(S)

v

vdyn

vss

Rn Rm

0 0

dt
d

dyn

x
C =

Cconsv

C

Smxn

R(S) C(S)

L(S)

The Four Fundamental Subspaces of S

dx/dt = Sv
Dynamic Mass Balance Equation:

S as a linear transformation from v to dx/dt:

Flux Solution Space
Row space
Null space

Concentration Solution Space
Column space
Left null space

THE 4 SUBSPACES OF S

In biochemical networks, the stoichiometric matrix acts as the linear 
transformation between the space of reaction activities and time derivatives of 
concentration space. Any biochemical transformation can be described using 
the dynamic mass balance equation, where x is the vector of metabolite 
concentrations, v is the vector of reaction activities and S is the stoichiometric 
matrix. S maps v onto dx/dt and has four subspaces. 
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Null Space of S

Null space of S, N (S), consists of all the vectors vss that satisfy,

Svss = 0

(i.e. when dx/dt=0 or at steady state).

Let N span N(S), thus:

SN = 0

N contains all the vectors that define the dependencies in the columns of S.

The dimension of N (S) is n-r (where r = rank(S))

The vectors of N define a basis set for all the steady state pathways in a 
metabolic network.

N(S)

v

v
dyn

vss

Rn Rm

0 0

d t
d

dyn
x

C =

C consv

C

Smxn

R(Ŝ ) R(S)

N(S )̂

NULL SPACE OF S

The first subspace we’ll look at is the null space. Null space of S consists of all 
the vectors that satisfy Sv = 0. This holds true for the steady state solutions or 
when dx/dt = 0. The vectors of N define a basis set for the null space. The 
dimension of the null space is n-r, where r is the rank of S. The null space 
spans the steady state pathway space of a biochemical network.
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Left Null Space of S

Left Null space of S, N (S^), consists of all the vectors that define the 
dependencies of the rows in S or,

LS = 0,

where L span N(S^).

Dynamic mass balance:
dx/dt = Sv

Multiply with L:
Ldx/dt = LSv = 0
Ldx/dt = 0
Lx = a = const.

The vectors of L define the conserved relationships amongst metabolite 
concentrations in a metabolic network.

The dimension of N (S^) is m-r (where r = rank(S)).

N(S)

v

v
dyn

vss

Rn Rm

0 0

d t
d

dyn
x

C =

Cconsv

C

Smxn

R(Ŝ ) R(S)

N( Ŝ )

NULL SPACE OF S

The left null space constrains all the conserved relationships. If there are 
dependencies in the rows of S, they would be defined by the basis set of the left 
null space. An example of conserved relationships was presented earlier in this 
lecture.
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Column Space of S

N(S)

v

v
dyn

vs s

Rn Rm

0 0

d t
d

dyn
x

C =

Cconsv

C

Smxn

R(S^) R(S)

N(S )̂

Column space of S, R(S), is spanned by all the independent columns 
of S,

C spans R(S),

The column space defines the dynamic concentration space in which 
metabolites are formed and consumed,

dx/dt = S1v + S2v+...+ Srv .

The dimension of R(S) is r (where r = rank(S)).

COLUMN SPACE OF S

The column space of S is spanned by all the independent columns of S and 
therefore has a dimension of r. The dynamic concentration space is defined by 
the column space, where each column vector contributes to the dynamic 
changes of the concentrations. 
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Row Space of S

N(S)

v

v
dyn

vs s

Rn Rm

0 0

d t
d

dyn
x

C =

Cconsv

C

Smxn

R(S^) R(S)

N(S )̂

Row space of S, R(S^), is spanned by all the independent rows of S,

R spans R(S^),

and defines the space of thermodynamic transduction which derives 
biochemical reactions to proceed.

The dimension of R(S^) is r (where r = rank(S)).

ROW SPACE OF S

The row space is spanned by all the independent rows of S and therefore its 
dimension is r. The row space is the space in which the changes in the 
concentration values contribute to the flux rates.
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Why should we analyze the stoichiometric matrices?Why should we analyze the stoichiometric matrices?
• The number of genome or chromosome projects launched since 1995 is about 480 
(Winstead, Genome Network News 2001)
• Analysis of metabolic networks with no kinetic information has been done for:

• Metabolites (Edwards, 1999; Jeong, 2000)
• Reactions/pathways (Schilling, 1998; Karp, 2001)

• A combined metabolite/reaction characterization has not been done for biochemical 
networks

How can we do it?How can we do it?
Singular value decomposition of metabolic networks:

• Offers a combined and simultaneous analysis of metabolites and reactions
• Provides information about metabolically decoupled and decorrelated systemic 
features

What can we learn from SVD analysis of stoichiometric What can we learn from SVD analysis of stoichiometric 
matrix?matrix?
Let us see!

Why S and Why SVD?Why S and Why SVD?

Why S and Why SVD?

Before starting to use SVD and learn its basic theory, let us first ask why we 
should care about analyzing stoichiometric matrices and why use SVD. What 
analytical tools can we use to further expand our understanding of the 
stoichiometric matrices and what should we expect to learn from them? 

The number of chromosome and genome projects lunched since 1995 has been 
estimated to be as much as 480. This means that there is an abundant amount 
of information available about the basic construct of many organisms and it is 
possible now to reconstruct stoichiometric matrices of various cells and living 
systems. Structure of metabolic networks has been analyzed and characterized 
in the past. However, the topological analysis of metabolic networks has been 
focused either on the analysis of metabolites or enzyme activities, individually. 
A combined characterization of metabolites and reactions has never been 
attempted.

Singular value decomposition provides an appropriate tool for this purpose. It 
offers a combined and simultaneous analysis of metabolites and reactions, and 
it provides information about the systemic properties that are completely 
decoupled and decorrelated from each other. We will see later why such 
decorrelated network properties may be useful for network analysis.
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Singular Value Decomposition in a NutshellSingular Value Decomposition in a Nutshell

Theory of SVD

Now let’s briefly review the theory of singular value decomposition. 

For a given matrix S, we can form or decompose the matrix into three matrices 
from which an inner product reproduces the original matrix. Such
decomposition is not arbitrary and determines the eigenvectors and 
eigenvalues of a matrix. But before we see what those properties are, let’s
schematically show how SVD works.

The stoichiometric matrix Smxn is a matrix in which there are m metabolites 
(i.e. the rows) and n biochemical reactions (i.e. the columns). Therefore, going 
from top to bottom on a column of S means we are looking at the 
stoichiometric coefficients of a reaction, and going sidewise on a row means 
we are looking at the connectivity or participation of metabolites over all the 
reactions in the network. When S is decomposed using SVD, we get an mxm
matrix U, an mxn diagonal matrix, and nxn matrix V. U is the left singular 
vector matrix, the middle matrix is the diagonal matrix of singular values, and 
V is the right singular vector matrix. If S is not full rank, then an rxr subset of 
the middle matrix is non-zero and each diagonal element gives a singular value 
of the matrix S (where r=rank(S)). Corresponding to this non-zero diagonal 
matrix, there exist an mxr matrix containing what we call the eigen-reactions 
of S and an rxn matrix of eigen-connectivities.
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SVD and the Four Fundamental SubspacesSVD and the Four Fundamental Subspaces

SVD gives orthonormal basis for the 4 subspaces:

SVD and the 4 Subspaces of S

We also mentioned that matrices of singular value decomposition have very 
special properties. We have talked about the four fundamental subspaces of S
in the previous lecture and we have explained the physical and geometric 
meaning of these subspaces (that is the column space, left null space, row 
space, and null space). The singular vectors of SVD give us a basis set for 
these four subspaces. U contains the column space and the left null space and 
V contains the row space and the null space of S. Not only SVD provides a 
basis set for the four fundamental subspace, it give a very special basis set. 
The basis sets that are generated using SVD are orthogonal to each other and 
are normal vectors, and also the right singular vectors are coup led to the left 
singular vectors (or the vectors of U and V are coupled) via the singular 
values. Thus, the relative importance of the coupling between the left and right 
singular vectors in the construct of the network is measured by the magnitude 
of the singular values.

Note that the row space contains thermodynamic information.
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Geometric Interpretation

http://www.stanford.edu/class/cs205/notes/book/node18.html

VT U

å

Geometric Interpretation

So, what does SVD tell us from a geometric point of view?

Let’s say that our original matrix represents a circle and some transformation 
will map the circle to an ellipse in three dimensional space. If we decompose 
this mapping using SVD, we see that our transformation happens via three 
steps (that is the three matrices of SVD). First, we apply a rotation to the 
original set by multiplying the right hand singular vectors, VT . Then an 
elongation is applied. The main axes are elongated based on the magnitude of 
the singular values. Finally, a second rotation is implemented when the set is 
multiplied by the left singular vectors. This is how SVD can be visualized 
geometrically.
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Mathematical FormulationMathematical Formulation
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Dynamic Mass Balance Equation:

Combine (1) and (2):

(for k-=1,...,r)

SVD decomposition of S:

(1)

(2)

or

uk
T

· x = uk1x1 + uk2x2 + … + ukrxm

Systemic reactions (eigen-reactions):

vk
T

· v = vk1v1 + vk2v2 + … + vknvn

Systemic participation: (eigen-
connectivity):

 
å u ki x i 
for  u ki <0 

å u ki x i 
for  u ki >0 

å v kj v j 

(3)

(4)

(5)

(6)

Mathematical Formulation

So, how do we incorporate SVD analysis into stoichiometric matrix analysis? 
The dynamic mass balance equation (Eq. 1) describes how the temporal 
concentration changes of metabolites, dx/dt, are related to the flux, v, changes 
of chemical reactions using stoichiometric matrix as a linear transformation. S, 
as described, is a linear mapping between the concentration space and the flux 
space. Singular value decomposition of S results in the formation of the left 
singular vectors, uk, diagonal matrix of singular values, si, and the right 
singular vector, vk (Eq. 2). We can substitute Eq. 2 in Eq. 1 and rearrange the 
equation, which allow us to formulate systemic reactions and systemic 
connectivities (Eqs. 4 and 5). This means that there is a linear combination of 
metabolites (Eq. 4) that is being uniquely moved by a linear combination of 
reactions (Eq. 5). The motion that takes place via these sets of systemic 
reactions and connectivities are orthogonal to each other and thus are 
structurally decoupled.
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Definition of Systemic Reactions:Definition of Systemic Reactions:
just for illustrationjust for illustration

uk
T

· x = uk1x1 + uk2x2 + … + ukrxm

a x1 + b x2 ® c x3 + d x4

Systemic reactions:

Example (for illustration):

e x5 + f x3 ® g x2 + h x6

S =

-a
-b
d
d
0
0

v1    v2

x1
x2
x3
x4
x5
x6

0
g
-f
0
e
h

u12 x2 ® u13 x3

u21 x1 ® u24 x4

u35 x5 ® u36 x6

v2

v1

0
-u12
u13
0
0
0

U =

-u21
0
0
u24
0
0

u1       u2 u3
0
0
0
0
u35
u36

x1
x2
x3
x4
x5
x6

u
2

u
1

...

Definition of Systemic Reactions

Any chemical reaction is a set of metabolites being converted to each other 
with stoichiometrically defined coefficients, a. For example, we can think of a 
system in which two chemical reactions proceed as shown. The chemical 
reaction vectors are not orthogonal to each other and they may span a space 
within which all the combinations of the flux values may fall. When the 
system is decomposed using SVD, the resulting eigen-reactions have 
coefficients that are different from the chemical reactions. These eigen-
reactions are orthogonal to each other and therefore capture the chemical 
structure of S that are independent from each other. Note that the matrix 
shown in this example is not exact and it is presented only for illustration 
purposes.
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Definition of Systemic Reactions:Definition of Systemic Reactions:
just for illustrationjust for illustration

uk
T

· x = uk1x1 + uk2x2 + … + ukrxm

a x1 + b x2 ® c x3 + d x4

Systemic reactions:

Example (for illustration):

e x5 + f x3 ® g x2 + h x6

S =

-a
-b
d
d
0
0

v1    v2

x1
x2
x3
x4
x5
x6

0
g
-f
0
e
h

u12 x2 ® u13 x3

u21 x1 ® u24 x4

u35 x5 ® u36 x6

v2

v1

0
-u12
u13
0
0
0

U =

-u21
0
0
u24
0
0

u1       u2 u3
0
0
0
0
u35
u36

x1
x2
x3
x4
x5
x6

u
2

u
1

...

Definition of Systemic Reactions

Any chemical reaction is a set of metabolites being converted to each other 
with stoichiometrically defined coefficients, a. For example, we can think of a 
system in which two chemical reactions proceed as shown. The chemical 
reaction vectors are not orthogonal to each other and they may span a space 
within which all the combinations of the flux values may fall. When the 
system is decomposed using SVD, the resulting eigen-reactions have 
coefficients that are different from the chemical reactions. These eigen-
reactions are orthogonal to each other and therefore capture the chemical 
structure of S that are independent from each other. Note that the matrix 
shown in this example is not exact and it is presented only for illustration 
purposes.
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Definition of Systemic ConnectivitiesDefinition of Systemic Connectivities

Example:

S =

-a
-b
d
d
0
0

v1    v2

x1
x2
x3
x4
x5
x6

0
-f
g
0
e
h

v12 v1 ® v12 v2

v21 v1 ® v24 v2

x2

x1
-v11
v12

VT =
v21
v22

v1       v2

v1
v2

v 2

v 1

a x1 + b x2 ® c x3 + d x4

e x5 + f x2 ® g x3 + h x6

Systemic participations:

vk
T

· v = vk1v1 + vk2v2 + … + vknvn

Definition of Systemic Connectivities

Similarly to the reactions, we can examine the metabolites and determine in 
what reactions they participate. In our example, the connectivity of metabolites 
can be examined by moving across the the rows of S. Once again, the 
connectivity vectors of metabolites are not orthogonal to each other. When the 
system is systematically decomposed using SVD, the resulting eigen-
connectivities have coefficients that are different from the chemical reactions. 
These eigen-connectivities are orthogonal to each other and capture the 
structural property of S that are decoupled. 
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Key Features of SVDKey Features of SVD

• SVD is an objective and non-parametric analytical method.

• S=USVT

S=s1<u1.v1
T>+ s2<u2.v2

T>+... +sr<ur.vr
T>

• SV=US

S | = | •

• UTS= SVT

— S = • —

• SVD provides a solution to an eigenvalue/eigenvector problem

• SVD forms orthonormal basis sets for the four fundamental subspaces of a 
linear mapping

• SVD can be used to identify and biochemically characterize the dominant 
features of metabolic networks

Key Features of SVD

SVD is an objective and non-parametric analytical tool. A matrix can be 
decomposed using SVD. The reconstruction of the matrix is done through 
multiplication of eigenvector and scaling by the eigenvalues. The 
decomposition can be represented in different forms which each can be 
informative. These alternative representations may show how the reactions are 
scaled, or how the metabolites are connected in S. Also, SVD provides a 
systemic way of determining all the eigenvalues and eigenvectors for a matrix. 
It generates the orthonormal basis for the four subspace. And finally, it allows 
for the identification of dominant feature in metabolic network.
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Angle Between a Pair of Vectors as a Angle Between a Pair of Vectors as a 
Measure of SimilarityMeasure of Similarity

cos(q) =

q = cos-1(u1.u2)

u1.u2
||u1|| ||u2||

More 
similar

less similar

Angle Difference as a Similarity Measurement

It is possible to determine how similar two vectors are in a higher dimension 
by calculating the angle they make. The smaller the angle the more similar 
they are. This can be done by calculating the inner product of the two vectors 
and determining the arccosine of this number.
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The U’s are more similar and V’s

The systemic metabolites are shared but the systemic reactions 
leading to these metabolites differ from one genome to another

Similarity Measure of Right and Left Similarity Measure of Right and Left 
Singular VectorsSingular Vectors

Similarity between the Right and Left Singular Vectors

As a means for comparing the singular vectors of different networks, the 
cosine angle of the vectors were measured in comparison with the singular 
vector of the genome-scale network of E. coli. As we can see the similarity 
between the singular vectors of U and V decreases as we go through the 
dominant modes. Another observation is that the singular vectors of U are 
more similar among the networks than those of V. This implies that the 
systemic metabolites are shared among the networks but the systemic reactions 
leading to them differ from one organism to another.
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Conversion of ATP to ADP 
and Pi

Redox Metabolism of 
NADP and NADPH

Proton motive force

Metabolism of inorganic 
phosphate

ATP ® ADP + Pi

NADPH ® NADP

Hext

Pi and PPi

EigenEigen--Reaction SpectrumReaction Spectrum

UU

The first 4 modes

Eigen-Reaction Spectrum

If we examine the singular vectors of the U matrix for the three genome-scale 
networks, we’ll see that the first mode represents the conversion of ATP to 
ADP and Pi, the second mode shows the conversion of the redox potential, the 
third mode represents the proton motive force, and the fourth mode shows the 
phosphate metabolism in the cell. 
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“ATP ® ADP + P i”

EigenEigen--Connectivity Spectrum (1Connectivity Spectrum (1stst Mode)Mode)
VVTT

Eigen-Connectivity Spectrum

(reactions that “collectively” drive the conversion)

We can also examine each singular vector of V that corresponds to these four 
singular vectors of V. The first mode delineates what reactions systemically 
contribute to the conversion of ATP to ADP and Pi. As you can see, a number 
enzymes are grouped together. In E. coli, the synthetase and ATP-coupled 
transporters show up together. In H. influenzae and H. pylori, ATP-coupled 
transporters and kinases are grouped together and contribute to this systemic 
conversion of ATP to ADP and Pi.
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“NADPH ® NADP”

EigenEigen--Connectivity Spectrum (2Connectivity Spectrum (2ndnd Mode)Mode)
VVTT

Eigen-Connectivity Spectrum

For the second mode, the systemic conversion of NADPH to NADP is done 
through the systemic coupling of fatty acid synthesis and reductases and 
dehyrogenases in E. coli and H. influenzae and fatty acid synthesis and 
reductases in H. pylroi.
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Eigen-Connectivity Spectrum

The third mode corresponding to the proton motive force is media ted through 
the systemic grouping of electron transport system and proton-coupled 
transporters in all three networks.
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Eigen-Connectivity Spectrum

Finally, the phosphate metabolism is achieved through the systemic grouping 
of phosphatase, dehydrogenase, and fatty acid degradation in E. coli, 
synthetase in H. influenzae, and synthase in H. pylori.
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• Cofactor participation in energy, redox , and phosphate 
metabolismconstitutes the dominant features of the metabolic 
networks, with a similar level of importance.

• Reactions deriving the leading features differ from one network to 
another.

• We can characterized dominant features of genome -scale 
metabolic networks that are systemically decorrelated.

• The differences among metabolic networks of living organisms are 
in finer details .

•We can now define systemic metabolic reactions for study of 
systems biology of metabolism.

What Have We Learned from the SVD What Have We Learned from the SVD 
Analysis of GenomeAnalysis of Genome--Scale Networks?Scale Networks?

Lessons Learned

So what have we learned from the analysis of metabolic networks using SVD?
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The Two Null Spaces of S:
Pools and Pathways
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N(S)

v

vdyn

v ss

0 0

dt
d

dyn

x
C =

Cconsv

C

R(S^) R(S)

N(S^)

The Four Fundamental Subspaces of S
Dynamic Flux Vectors: 
thermodynamic state

Time Derivatives of 
concentrations: 

Dynamic Invariants:
Pools of metabolite concentrations

vss ® Svss = 0

v ® Sv

vdyn ® Svdyn = Sv

Steady State Flux Vectors:
Extreme pathways

A Schematic Depiction of the Action of a Matrix and the Four Subspaces 
Associated With It

Every matrix can be thought of as a mapping function or a linear
transformation.  It takes a vector from one space and transforms it into a vector 
in another space, of perhaps a different dimensionality.  The four fundamental 
spaces are the row, column, null, and the left null spaces.  These spaces are 
further described on the next slides.
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The Four Fundamental Subspaces of  S
• The row space

– contains the dynamic flux vectors and thermodynamic 
transitions

• The null space
– contains all the steady state solutions to the flux balance 

equations

• The  column space
– contains the time derivatives of concentrations resulting 

from the mapping

• The left null space 
– contains all the dynamic conserved invariants of the 

network

The Four Subspaces of the Stoichiometric Matrix

All the four fundamental subspaces of S will be of interest to us.  The first 
spaces that we will study are the right and left null space of S, since they 
contain all the steady state solutions, Sv = 0, and the pooled variables, Σi
(dXi/dt) = 0.
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Pools and Pathways

A* D
E

E*

B
A

C

POOL: CONSERVED BY FLOW IN PATHWAY

PATHWAY: CONNECTING INPUT TO AN OUTPUT

Pools and Pathways

The null space defines the space in which all the steady state solutions reside. 
In this space, pathways are formed which connect the network’s input(s) to its 
output(s), while keeping the net metabolite rates unchanged over time (i.e. 
dX/dt=0). 

The left null space on the other hand, defines a space in which all the conserved 
concentration quantities reside. Here, the conserved metabolite entities form 
the pools whose total value stay constant in the network and does not change 
by the flow in the pathways.
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The Closed “A to B” System

S =
−1 1
1 −1

 
 
  

 

The Null Space The Left Null Space

1
1

 
 
  

 p1 

A B

p1

1 1( ) C1 

A B

C1

+

v1

A B

v2 AkBk
dt
dB

BkAk
dt
dA

12

21

+−=

+−=

The Simple ‘AB’ Example:

Let’s consider a reversible reaction.  The stoichiometric matrix S is shown, and 
it is rank deficient or singular.

The addition of the two columns gives zero.  This can be seen by multiplying 
the stoichiometric matrix with the column vector (1,1)t. Thus, this column 
vector spans the null space.  This vector represents the pathway

v1+v2

or the reversible back and forth reaction.

The addition of the rows gives a zero.  This can be seen by multiplying from 
the left with the vector (1,1).  Thus (1,1) spans the left null space and represents 
the summation of 

A+B.  

It is obvious in this case that this sum is time invariant.
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The Open “A to B” System

v1

A B

v2

b1 b2 S =
−1 1 1 0
1 −1 0 −1

 
 
  

 

The Null Space: The Left Null Space:

1 1
0 1
1 0
1 0

 

 

 
 
 

 

 

 
 
 

p1 
p2 

A B
p1

A B

p2

No Conservation Quantities

The Open ‘AB’ Example

If we now add exchange fluxes, the stoichiometric matrix for the closed system 
is ‘appended’ with the exchange reactions.  The matrix is no longer rank-
deficient.  Thus, the left null space is of zero dimension and there are no 
conserved quantities.  The sum of A and B will vary with time depending on 
the exchange fluxes.

The null space is now two-dimensional.  It is spanned by two pathways. The 
same pathway that existed for the closed system, corresponding to the 
reversible reaction, is still there.  Later, we shall classify this pathway as Type 
III.

There is a new pathway vector.  It ties the input and the output via a straight 
pass through the system.  Later, we shall classify this pathway as Type I.

Any steady state flux distribution in this simple open ‘AB’ system is a linear 
combination of these two basis pathways.
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The Larger Closed “A to B” System

The ‘Smaller’ Left Null Space:

C1 =  A + B

v1

A B

v2

b1 b2A* B*

The ‘Larger’ Left Null Space:

C2 = A* + A + B + B*

The Small Null Space:

1 1
0 1
1 0
1 0

 

 

 
 
 

 

 

 
 
 

p1
p2

A B
p1

A B

p2

v1
v2
b1
b2

p1  p2

The Larger Closed “AB” Example

If we now add the external metabolites A* and B*, the system is again closed.
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The open “A to B to C” System

A B C S =
−1 1 0 1 0
1 −1 −1 0 0
0 0 1 0 −1

 

 

  

 

 
  

p1 = (1 , 0 , 1, 1, 1)
p2 = (1, 1, 0, 0, 0)

A B

p2

A B

p1

C

A Slightly More Complex Example

The next two slides contain a slight variation from the previous example.  Now 
we are examining a 3 component system but the analysis is the same. A and B 
equilibrate on the fast time-scale forming a pool (A+B).  On the slower time 
scale the the pool (A+B) is filled via the input reaction and drained via the 
conversion to C. 
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The Michaelis-Menten Mechanism: Open System

p1 
p2

C1 = (0, 1, 1, 0)

S E+ E P+ES

p1 
p3 

p4
p5

S E+ E P+ES

No conservation quantities

v1

v2

v3

b1

b2

b3

b4

1  1  1  1  1

0  1  0  0  0

1  0  1  1  1

1  0  1  0  0

1  0  0  1  0

0  0  0  1  1

0  0  1  0  1

p1 p2 p3 p4 p5
b1 b2 

b1 b2 

b3 b4

The Michaelis-Menten Mechanism:

open system

Again, this slide just shows the changes in the pathway and conservation 
structures as a result of adding inputs and outputs to the system.
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Summary
• Stoichiometric matrix is derived from annotated genomes given 

knowledge of enzyme stoichiometries and is a mathematically compact 
description of metabolic maps

• The chemical elements, ionic charge, and biochemical moieties must 
be balanced in the stoichiometric matrix

• The stoichiometric matrix is ‘sparse’, i.e. few non-zero elements
• 4 fundamental subspaces of S are keys to understanding pool and 

pathway formation, and thus model reduction and conceptual 
simplification

• The null space of S contains the steady state solution and the pathway 
vectors

• The left null space of S contains time invariants
• SVD gives orthonormal basis for the 4 subspaces
• SVD characterizes dominant features of genome-scale metabolic 

networks that are systemically decorrelated
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