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Closing the Flux Cone
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Enzyme Catalysis

Reaction mechanism:  S + E <=> X -> P + E

Rate equation:  v = vmaxS/(Km+S) if X in a quasi steady state

flux

0

Vmax

0.5 Vmax

S=Km SConcentration

Capacity Constraints On Metabolic Fluxes

This slide reviews the basic principle of Michaelis-Menten kinetics.  As discussed in the next slide, the 
flux through any given enzyme will have a finite maximum possible value.  To discuss how these 
maximal fluxes “cap” the solution space, let us briefly review how such a space is generated.

Linear spaces are characterized by a basis set where any linear combination of the basis vectors is found 
in the space, i.e.;

v = Σι wipi

Where pi are the conical basis vectors, as introduced in the last lecture.  The weights, wi, used to multiply 
the basis vectors in the summation are positive.

Since the individual reaction steps (vi) in a pathway vector are carried out by an enzyme there are 
limitations placed on the numerical values that wi can take in a real system:

•Minimum: the reactions are irreversible, thus the weights are positive

•Maximum: there is maximum flux through an enzymatic reaction, thus there are maximum weights; thus

0 < wi < wmax

Since a pathway vector is comprised of a series of individual reactions, the step with the lowest capacity 
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Estimation of maximal fluxes

• Using typical numerical values for:
– concentrations for enzymes (4µM) and 
– metabolites (100µM), and 
– theoretical maximal bimolecular association rate constants and
– data on enzyme turnover numbers, we estimate that:

Vmax to be one  million molecules per cubic micron per second

• The maximal measured fluxes are about half that 
value

Estimation of Maximal Fluxes

In an earlier lecture, we estimated the typical concentrations for enzymes and metabolites based on the 
space available in cells, and the number of different metabolites and proteins present inside a cell.  This 
information, along with the theoretically limited biomolecular association rate constant, led to the 
estimate that the maximum fluxes through a metabolic reaction in a cell is on the order of a million 
molecules per µ3/sec.  The most rapid metabolic fluxes measured are on the order of half of this numerical 
value.  This limit puts an upper bound on all the fluxes that take place in a cell.  Of course, the cell can 
down-regulate gene expression, and fluxes can be constrained below that maximum.
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A geometric 
representation of the null 

space and constraints 
imposed through 

inequalities: it is the 
intersection of the null 
space and the positive 

orthant in the n-
dimensional space:
(Nul S)     Rn

+      Vmax∩ ∩

The Steady State Flux Space

The Confined Solution Space As An Intersection 

Nul S  ∩ Rn
+ ∩ Vmax

In linear algebra the term ‘null space’ is used to describe the space that contains all of the solutions to a 
system of homogeneous linear equations.  The solution space of interest to us is actually the intersection 
of this null space with the region bounded by the inequalities placed on the weights.  This space represents 
and defines the boundaries and capabilities of a metabolic genotype describing all of the possible flux 
distributions and routes which can theoretically operate through the system, clearly defining what an 
organism’s metabolic network can and cannot do.  

Within the solution space we can find the answers to any and all of our questions which pertain to the 
structure and production capabilities of an organism.  
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History of Flux-Balance Analysis

Edwards, J.S., et al. Environmental Microbiology (2002)
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Schilling, Edwards and Palsson:
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Performance limits of E. coli subject to gene additions/deletions
Minimal reaction sets
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SOME HISTORICAL EVENTS IN THE DEVELOPMENT OF FBA

This slides shows some of the historical events in the development of FBA of under-determined systems.  
A detailed historical review is found in:

Edwards, et al Metabolic flux balance analysis in Metabolic Engineering, Lee and Papoutsakis Editors
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pressure directing evolution

“optimal” state
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The solution space defined in the previous slides represents all of the possible (i.e., allowable) metabolic 
behavior of the cell.  A living cell (or population of cells), however, will tend to exhibit only one 
phenotype under a given set of conditions.  What, then, determines the cell’s “choice” of a particular 
phenotype?

We have assumed that the cell’s ability to survive and to grow has led to the evolutionary selection of its 
optimal growth in a particular set of conditions.  Thus, the pressures directing evolution will drive the 
behavior of the cellular metabolic network toward an optimal edge of the solution space (a concept 
described quite nicely in Bialy’s “Living on the edges,” Nat. Biotechnol., 19:111-112).  If other selective 
pressures are present that, for instance, require a certain phenotype for the cell to survive (a phenotype 
that may not necessarily be “optimal”), then that phenotype will be selected for.  Experimental validation 
of the hypothesis for optimal growth has been published by our research group (Edwards, et al., Nat. 
Biotechnol., 19:125-130), and will be discussed in detail in Lecture 15.
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Linear Programming
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Linear Programming: What is it?
finding an optimal solution in a confined space
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LP:  What is it?

This diagram depicts a bounded polytope in 3 dimensions.  Imagine that it is the space of possible 
solutions to a set of linear equalities with constraints, such as the flux balance equations and the capacity 
constraints.  Each point in this space satisfies these conditions.  However, the nature of the solutions 
differs.  We can choose a particular solution in this space that is the ‘best’ in some sense.

This idea underlies LP.  We state an objective function that measures what we are interested in. We then 
try to find the best value for this objective function under the given constraints.  The best value normally 
means the maximum value.  Minimization can be performed by simply finding the maximum of the 
negative of the objective function.

The optimal solution normally lies in a corner of the polytope. Occasionally, the objective function has 
the same value along a whole edge and all the points on that edge are optimal values.  In this rare case the 
objective function is ‘parallel’ to the edge of the polytope.
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Optimizing cellular growth  (=max likelihood of survival?)

Nucleosides

Heme

Pyrimidines

Lipids

Purines

CellWall

AminoAcids

Biology

Z = civi
i

∑ =c ⋅v

S ⋅ v = 0
αj ≤ vj ≤βj

Mathematics

Maximize

Subject to

Data derived!

As discussed a few slides ago, the biophysical limitations of each enzyme will limit the maximal flux that each can support.  
Capacity constraints can thus be imposed on the value of each flux in the metabolic network.  These constraints can be used to 
set the uptake rate for the transport reactions and define the reversibility of each metabolic reaction.  Thus, the solution space is 
defined by the system stoichiometry (S v=0), bounded by the capacity constraints.

The determination of a particular metabolic flux distribution can be formulated as a linear programming (LP) problem, to be 
discussed in more detail in a later slide.  The solution is then found which maximizes the objective function, Z, subject to the 
stoichiometric and capacity constraints.  In the equation for Z presented above, the vector c is used to select a linear 
combination of metabolic fluxes to include in the objective function.  As stated in the previous slide, we define cellular growth 
as the objective function; therefore, c was defined as the unit vector in the direction of the growth f lux, and the growth flux is 
defined in terms of the biosynthetic requirements (i.e., the proportion of each component of the biomass defined from the 
literature).  This growth flux is thus modeled as a single reaction that converts all biosynthetic precursors into biomass.

It is important to keep in mind that the stoichiometry, the bounds on the solution space, and the biomass composition used in 
defining the objective function all are data-derived.  These data then are used to calculate (via LP) the value of the objective 
function and the flux map (i.e., v) that achieves this objective.  It is also worth noting that the flux map may be non-unique (i.e., 
if the optimal solution lies along an edge, plane, or hyperplane, rather than simply lying at a vertex); thus, several different sets 
of fluxes may achieve the same optimal objective.
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pressure directing evolution
“optimal” state (e.g. growth)
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reduction in capability

Z = civ i
i
∑ = c ⋅v

S ⋅ v = 0
α j ≤ vj ≤ β j

This slide is simply a reiteration of the previous two slides, with the added conceptualization of how a 
reduction in a cell’s metabolic capability will lead to a shrinkage in the solution space and could 
conceivable lead to a different optimal solution.  Such a reduction in capability can result from knocking 
out a gene(s) that encodes for a particular enzyme(s), or from a lowered expression of a gene(s) due to 
transcriptional regulation (to be discussed in much greater detail in Lecture 17).
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How does LP work? 
A very simple 

example

Bonarius,et al TIBTECH vol 15:308 (1997)

The solution space is the line of 
admissible in the positive orthant. 

If we  maximize ATP production 
the solution lies on the x-axis 
where all the flux would be 
through reaction x1.  Conversely, 
maximizing NADH production 
would give the point at the y -axis, 
where only reaction x2 is active.

Note that the optimal solutions lie 
at the boundary of the admissible 
space.

x1+x2= rA

Example

This slide displays a simple and readily understandable example of linear programming.  Depicted is a 
reaction network where a compound A is picked up by a cell and is metabolized to B via two different 
routes and then secreted.  One route produces high energy phosphate bonds in the form of ATP. The other 
route produces redox potential in the form of NADH.  The only flux balance in this system is that the sum 
of the two internal fluxes must equal the exchange flux.  Once rA is measured and known, this forms a 
straight line in the x1 x2 plane.  Since the fluxes are constrained to be positive, we canonly be in the 
positive quadrant of the plane, and thus the solution plane is the segment of the line shown in the figure.  

If one maximizes ATP production, it is clear that x2 should go to zero, and x1 to the maximum value equal 
to the uptake rate.  That solution lies at the extreme point of the solution space to the right.  Conversely, if 
you tried to maximize the redox production from this metabolite in the form of NADH, the optimal 
solution is x2 equal to the uptake rate rA, and x1 goes to zero.  That optimal solution is in the opposite end 
of the solution space.  This simple example illustrates how optimal solutions in linear spaces are found at 
the extremities of the allowable solution spaces.  We will classify the solutions further below.

What happens if you maximize x1 + x2?
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Types of objective functions

• For basic exploration and probing of 
solution space

• To represent likely physiological 
objectives

• To represent bioengineering design 
objectives

The Objective Function

Within the solution space defined by the connectivity and capacity constraints, we can search for the best 
solution using linear optimization.  What we search for is determined by the objective function stated.  
There are several types of objective functions that can be used. First, we can use objective functions to 
explore the properties of the solution space, and the capabilities of an organism.  These objective 
functions include things like maximizing the ATP from a given substrate, or maximizing the amount of an 
amino acid produced from a given substrate.  These types of objective functions are non-physiological, 
but can be used to probe the properties of a network.  A second class of objective functions would 
represent objectives that we believe are physiologically relevant.  For microbial cells, the belief is that 
they maximize their growth rate given the constraints under which they operate.  In this case, the 
objective is the balanced exit from the network of all the precursors needed for the synthesis of the 
cellular mass.  The third type of objective function may relate to an intentional engineering objective of a 
metabolic system.  We may wish to maximize a product like Lysine, for instance, and try to figure out 
what the best flux maps are that lead to the production of Lysine.  We can add or delete reactions from the 
network to determine how those changes affect the yield of the desired product.
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Questions that can be addressed using 
LP: calculating optimal phenotypes

Minimize: ATP production
nutrient uptake
redox production

metabolite production
Maximize: biomass production (i.e. growth)

the Euclidean norm of the flux vector

Are there multiple optima for an organism and does it use kinetic 
regulation to move from one edge to the next?

Optimal Phenotypes

A number of different objective functions have been used for metabolic analysis. These include:

Minimize ATP production: This objective is stated to determine conditions of optimal metabolic energy 
efficiency.

Minimize nutrient uptake: This objective function is used to determine the conditions under which the cell 
will perform its metabolic functions while consuming the minimum amount of available nutrients.

Minimize redox production: This objective function finds conditions where the cells operate to generate 
the minimum amount of redox potential.

Minimize the Euclidean norm : This objective has been applied to satisfy the strategy of a cell to minimize 
the sum of the flux values, or to channel the metabolites as efficiently as possible through the metabolic 
pathways.

Maximize metabolite production: This objective function has been used to determine the biochemical 
production capabilities of Escherichia coli.  In this analysis, the objective function was defined to 
maximize the production of a chosen metabolite (i.e. lysine or phenylalanine).

Maximize biomass and metabolite production: By weighing these two conflicting objectives 
appropriately, one can explore the tradeoff between cell growth and forced metabolite production in a 
producing strain.
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Calculating Optimal Phenotypes using LP:
the objective function Z

Minimize Z, where

Z = civi
i

∑ =c ⋅v

c is the vector that defines the weights 
for of each flux in the  objective 
function, Z.  The elements of c can be 
used to define a variety of metabolic 
objectives.

The Objective Function

Numerous questions about metabolic capabilities can be answered using LP.  The stoichiometric and 
capacity constraints define a range of allowable behavior.  We can then find the best value within these 
constraints.  Biologically, we have defined the space of all phenotypes (that is particular solutions) that 
can be derived from a genotype.  We can calculate the best pheno type from a particular standpoint.  For 
instance, we can calculate the maximum number of ATP molecules that can be generated from a 
particular substrate.

The next slide lists a number of important phenotypic behaviors that can be calculated using LP.  The 
maximum growth function is perhaps the one of greatest interest from an evolutionary standpoint.

This general representation of Z enables the formulation of a number of diverse objectives.  These 
objectives can be design objectives for a strain, exploitation of the metabolic capabilities of a genotype, or 
physiologically meaningful objective functions, such as maximum cellular growth.  
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Mathematical formulation of 
objective functions

Minimize  Z =<c ⋅v >= civi
i

∑

 v=

vG6P

vF6P

vATP

vNADH

 

 

 
 
 

 
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 
 
 

       

Example:  Minimize ATP production

 c=

0
0
-1
0

 

 

 
 
 

 

 

 
 
 

       
Minimize Z
Z = 0 ⋅vG6P + 0⋅ vF6P −1⋅ vATP + 0⋅ vNADH

                   

Mathematical Formulation of Objective Functions

This slide illustrates the formation of the objective function using a simple example.  In the example there 
are 4 metabolite fluxes.  The objective is to minimize ATP production, therefore the c matrix has a zero 
“weight” on all fluxes except vATP which has a -1  The coefficient on the ATP flux is negative since it is 
being minimized. 
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The growth 
requirements

Metabolic demands of precursors 
and cofactors required for 1 g of 
biomass of E. coli.

These precursors are removed from 
the metabolic network in the 
corresponding ratios.

Thus, the objective function is:

Z =  41.2570 vATP - 3.547vNADH +  
18.225vNADPH +  ….

Metabolite Demand 

(mmol)

ATP 41.2570
NADH -3.5470
NADPH 18.2250
G6P 0.2050
F6P 0.0709
R5P 0.8977
E4P 0.3610
T3P 0.1290
3PG 1.4960
PEP 0.5191
PYR 2.8328
AcCoA 3.7478
OAA 1.7867
AKG 1.0789

The Growth Function

This table shows the requirements for making one gram of E. coli.  This means that for the cell to grow, 
all these components must be provided in these amounts.  Thus, a balanced set of metabolic demands 
makes up the growth objective function:

Z = 41.257vATP - 3.547vNADH + 18.225vNADPH + 0.205vG6P + 0.0709vF6P +      

0.8977vR5P + 0.361vE4P + 0.129vT3P + 1.496v3PG + 0.5191vPEP + 

2.8328vPYR + 3.7478vAcCoA + 1.7867vOAA + 1.0789vAKG 

The biomass composition thus serves to define the weight vector c. 

The full growth function for E. coli is more complicated than the one given above, since various 
maintenance functions need to be considered.
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Optimizing cellular growth  (=max 
likelihood of survival?)

Nucleosides

Heme

Pyrimidines

Lipids

Purines

CellWall

AminoAcids

Biology

Z = civ i
i
∑ = c ⋅v

S ⋅v = 0

α j ≤ vj ≤ β j

Mathematics

Maximize

Subject to

The Maximization of Biomass Formation

This slide shows schematically on the left the idea of maximizing biomass formation.  There can be one or 
more inputs (the green arrows) and a balanced (linked) output that corresponds to the biomass 
composition.

On the right, we show the mathematical formulation of the problem.  We wish to maximize the objective 
function under the stated constraints.  These constraints form a closed cone as explained earlier.
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Biomass composition: some 
issues

• Will vary from one organism to the next
• Will vary from one growth condition to another
• The optimum does not change much with changes in 

composition of a class of macromolecules, i.e. amino acid 
composition of protein

• The optimum does change if the relative composition of 
the major macromolecules changes, i.e. more protein 
relative to nucleic acids

Biomass Composition

The physiologically interesting objective that we wish to study throughout these notes is the maximization 
of biomass yield.  The definition of the solution space has few ambiguities associated with it, but the 
statement of the objectives has a few uncertainties built into it.  First, the biomass composition is variable.  
It is different from one organism to another.  It varies from one growth condition to another, and both of 
those may potentially be important issues and change the predicted optimum behavior.  Legacy databases 
of biomass composition are needed.  

The limited calculations that have been performed show that the optimum solutions do not change 
significantly with the monomeric composition of the major macromolecules.  For instance, if the Valine 
to Alanine ratio is varied in the protein of a cell, the optimal growth rate does not significantly change.  
Conversely, if the protein relative to lipid composition in a cell changes, the optimum solution tends to be 
affected.

As will be shown, one can invert this problem and look at an edge of the solution space and then calculate 
all the objective functions that are maximized under those conditions.  This might give better insight into 
the objectives that cells are trying to accomplish.
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Constraints
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The Constraints

S ⋅v = 0

Flux Balance Constraints

Capacity  Constraints

0 ≤ vi ≤ ∞

α j ≤ v j ≤ β j

η k ≤ v k ≤ ηk

All reactions are irreversible, reversible reactions are 
defined as two separate strictly positive reactions

To constrain the upper and lower bound on specific fluxes.  
Used to set the maximal uptake rate if specific measurements 
are not available.  i.e. maximal oxygen uptake

To set the flux level of a specific reaction.  This constraint 
is used for fluxes that have been experimentally determined 
- typically the uptake rate of the carbon source

Imposing Constraints

The constraints are stated as the flux balance equations and capacities of the individual fluxes.  

Using LP, constraints can be placed on the value of the flux through each of the metabolic reactions.

These constraints could be representative of a maximum allowable flux through a given reaction, resulting 
from a limited amount of an enzyme present.  These constraints could also be used to include the 
knowledge of the minimum flux through a certain metabolic reaction.

The restriction of the flux through certain reactions can be used to model the regulatory events occurring 
within the cell.  Further, any experimental information can be represented by a and b by imposing the 
error range in the measurements made.  The incorporation of regulatory information in the model is also 
possible.  For instance, the catabolite repression of certain enzymes, such as ppc  and pps  during growth 
on glucose can be represented by setting these fluxes to zero or some low level.  Thus, the use of such 
additional constraints provides increased flexibility in analyzing the metabolic network by incorporating 
additional knowledge about a particular cell.
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Determining constraints
• Experimental determination
• Estimation

Example: estimating oxygen uptake rates:

oxygen

Flux = kDC = (2D/d)C sat

If Sh =2 
Then the maximum oxygen uptake rate is
Nmax = 2 (2.1 X 10-5 cm2/sec)(0.21mM)/1mm

= 8 X 10-10M/cm2/sec
If the area per cell is 12 mm2 = 12 X 10-8 cm2

Nmax =10-16M/sec/cell
Since one cell is about 1 fg = 10-12 mg
Nmax = 100 mmol/cell/sec

Stating Constraints

Using the diffusivity equation, the oxygen uptake rate of a cell can be estimated.
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Sensitivity Measures:
Shadow Prices
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The Dual Problem:  The Shadow Prices

In designing metabolic engineering strategies, an important question is; to what extent can specific fluxes 
be altered, and what the ensuing effect will be on the cellular processes of interest, including growth and 
product formation?  These issues can be addressed within the LP formulation by using sensitivity analysis 
of the optimal solution.

The so-called shadow prices, derived from the dual problem are the derivative of the objective function at 
the boundary.  The shadow prices can be used to determine whethe r the cell is limited by a particular 
constraint.  This feature has proven to be useful in interpreting optimum solutions, and metabolic decision 
making.
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Sensitivity Measures: 
Reduced Costs

Definition
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The Reduced Costs

The reduced costs can be defined as the amount by which the objective function will be reduced if the 
corresponding enzyme is forced to carry a flux (expressed or “turned on”). 

In the analysis of metabolic systems, several important questions arise that can be addressed with an 
analysis including the reduced costs.  The reduced costs can be used to analyze the presence of alternate 
equivalent flux distributions, i.e. if the right set of reduced costs are zero.  Additionally, the reduced costs 
are important in examining the effect of gene deletions on the overall function of metabolism.  
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Types of solutions:
feasible and non-feasible solutions

Feasible: solutions 
possible within all 
stated constrains

Not feasible: 
solutions not 
possible within all 
stated constrains

Types of Areas Formed By Constraints

The stated constraints can be consistent and form a feasible set as shown on the left.  In some cases, the 
constraints are such that there are no solutions that can satisfy all the constraints.  As seen below, 
sometimes the feasible set is unbounded and stretches infinitely in one direction.
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Types of solutions:
the impact of the objective function

Optimal 
solution in a 
corner

Optimal solution 
along an edge

Optimal 
solution not 
found--region 
unbounded

Single solution Degenerate 
solution

No solution

Lines of constant Z

The Types Of Solutions Found

On the left we show the most common situation, namely that the optimal solution lies in a corner of the 
feasible set.  In rare instances, the line formed by the objective function is parallel to a constraint.  In this 
case, the entire edge of the feasible set has the same value of the objective function and all the points 
along the edge represent an optimal solution.  Sometimes the feasible set is unbounded and the objective 
function increases without limit in the open direction.  In this case, no solution is found.
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Gene Enzyme Flux
Gene1 Enzyme1 R1

Gene2 Enzyme2 R2

Gene3 Enzyme3 R3

Gene4 Enzyme4 R4

Gene5 Enzyme5 R5

Gene6 Enzyme6 R6

Gene7 Enzyme7 R7

Gene8 Enzyme8 R8

Gene9 Enzyme9 R9

Gene10 Enzyme10 R10

GeneA A Transporter Aup

GeneD D Transporter Dup

GeneF F Transporter Fup

GeneH H Transporter Hup

Aexternal

B

2 C

D

E

F

G

H

Hexternal

Dexternal

Fexternal
Cell 
Membrane

System 
Boundary

Aup

Hup

Dup
Fup

I
I

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

Vm B + 2H Biomass
Vgrowth

Example: the metabolic map and 
gene list

A list of the genes is obtained and the fluxes are indexed.  Then the metabolic map is drawn.

In this case the growth function is a simple addition of two biosynthetic precursors.
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The flux balance equation for example network

The stoichiometric matrix is formulated and flux balances stated.  Note that the matrix is partitioned into 
external and internal fluxes.
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0 ≤ R2 ≤ ∞

0 ≤ R3 ≤ ∞

0 ≤ R4 ≤ ∞

0 ≤ R5 ≤ ∞
0 ≤ R6 ≤ ∞

0 ≤ R7 ≤ ∞

0 ≤ R8 ≤ ∞

0 ≤ R9 ≤ ∞
0 ≤ R10 ≤ ∞

Y1 ≤ Vm ≤ Y1

0 ≤ Vgrowth≤ ∞

Y2 ≤ Aup ≤Y2

−∞ ≤ Dup ≤ 0

−∞ ≤ Fup ≤ 0

−∞ ≤ Hup ≤ 0

Mass Balances Flux Constraints

Objective Function
Z=Vgrowth

Example 
continued:

The mass 
balances, the 
capacity 
constraints, and 
the objective 
function

The flux balances in a simplified form, with the capacity constraints.  The objective function is the growth 
function.

Now these equations can be entered into a software package that allows you to optimize the stated 
objective.

END OF EXAMPLE
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Varying parameters:

Repeated sequential optimizations for 
multiple values of a single parameter

In a previous lecture we looked at optimal mitochondrial flux maps for different substrates and for 
constraints on several internal fluxes.  These are calculated for a discrete set of conditions. 

We may however, be interested in the range of numerical values for a particular parameter.  Thus, we can 
calculate a series of optimal solutions for small incremental changes in a parameter in the system.  If the 
increments are small enough, we effectively get a continuous variation in the parameter of interest.
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Example: Reducing Oxygen Availability

When cells grow in the laboratory with abundance of substrate they grow to high densities, eventually 
outstripping the ability for oxygen to be supplied rapidly enough to support fully aerobic growth.  As 
oxygen becomes limiting, the cells must partially oxidize their substrate and secrete metabolic by-
products. 

The panel on the left illustrates this problem at the cellular level.  At the right this problem is illustrated 
from a bioprocess viewpoint. The arrow indicates growth of a culture supplied with a  constant rate of 
oxygen.  As the culture grows, the oxygen demand increases and passes the line indicating the boundary 
between aerobic and anaerobic growth.

The following slides were prepared with a reduced E. coli model in 1993 (Varma, A&EM), but it 
illustrates how parameter variations can be used to study problems of fundamental physiological 
relevance, and practical importance.
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Example

In this example we vary the 
maximum allowable uptake 
rate of oxygen. The whole 
range of oxygenation is 
shown, from fully aerobic 
conditions to fully anaerobic 
conditions.

The growth rate is graphed in 
the upper panel and the by-
product secretion rates in the 
lower.

anaerobic aerobic

Varying Oxygen Availability

As the dissolution of oxygen cannot keep up with the high volumetric consumption rates at high cell 
density, the amount available per cell is reduced.  Computationally this is represented by lowering the 
capacity constraints on the oxygen uptake rate.  

The results from a series of LP calculations with varying bO2 is shown in this slide (glucose uptake rate is 
fixed at 10mmol Glc/gDW-hr).  The optimal growth rate drops as the oxygen uptake rate is reduced, as 
shown in the upper panel.  It does so in piece-wise linear fashion where changes in the slope occur at well 
defined oxygen uptake rates.  This feature naturally divides the range of oxygen uptake rates into distinct 
phases.

The lower panels shows the secretion rates of metabolic by-products: formate, ethanol and acetate. Each 
one of these by-products is secreted in a fundamentally different way in each phase.  As oxygen is 
reduced, incomplete oxidation of glucose takes place and metabolic by-products are secreted; acetate is 
first secreted, then formate, followed by ethanol.  

The LP solution in each phase is fundamentally different and the transition from one to another can be 
interpreted using shadow prices.
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Shadow price 
= -slope

oxygen

I IIShadow prices can be used 
to interpret the changes in 
the optimal flux 
distribution

Changes In Shadow Prices At Phase Boundaries

The shadow price changes discontinuously at the boundary from one phase to the next.  In fact, the change 
in the shadow price defines the boundary between the phases.  The shadow prices basically tell us how the 
governing constraints on the objective function change and how the base optimal LP solution changes.  
This change is reflected in a shift in the flux map.

Phase I shown above is for completely anaerobic growth.  The shadow prices for oxygen and ATP are 
negative, indicating that these are constraining factors, since the objective function would increase as 
more of these compounds are provided to the cell. Some of the redox carriers have positive shadow prices 
indicating that the cell has a problem with excess redox potential.  This is characteristic of anaerobic 
metabolism.

In Phase I, acetate, ethanol, and formate, all have zero shadow prices, indicating that these intermediates 
are useless to the cell.  Thus they are secreted.  Notice that in Phase II, ethanol has a negative shadow 
price.  It thus has value to the cell and is not secreted.  In fact the defining difference between the optimal 
flux maps in phase I and II is the secretion of ethanol.  The shadow prices are thus key in interpreting the 
optimal flux maps and changes in the maps as parameters vary.



35

University of California, San Diego
Department of Bioengineering

Systems Biology Research Group
http:// systemsbiology.ucsd.edu

Phase Plane Analysis:

Varying more than two parameters

Phenotype Phase Plane Analysis

A useful way to extend the study of metabolic genotype-phenotype relation is to use two parameters that 
describe the growth conditions (such as substrate and oxygen uptake rates) as two axes on an x,y-plane.  
Then the optimal flux-maps can be calculated for all points in this plane.  There are a finite number of 
fundamentally different optimal metabolic flux maps present in such a plane.  The demarcations between 
the different flux maps are determined from the shadow prices of the metabolites.  As we have seen, the 
shadow prices are sensitivity parameters that are calculated in the dual solution to the LP problem, and 
can be used to interpret shifts from one optimal flux distribution to another .  This procedure leads to the 
definition of distinct regions in the plane in which the optimal use of the pathways is fundamentally 
different, corresponding to a different phenotypic behavior.  We will denote each phase as:Pnx,y. Where P 
represents phenotype, n is the number of the demarcated region for this phenotype,and x,y the two uptake 
rates on the axis of the plane.

This phase plane resembles the phase planes used in physical chemistry, which define the different states 
(i.e., liquid, gas or solid) of a chemical system depending on the external conditions (e.g., temperature, 
pressure).  The plane that we have just described can thus be called the phenotype phase plane (PhPP) for 
a given genotype.  The construction of the phase plane and its main features will now be described, and 
then conceptually illustrated with a simple example.



36

University of California, San Diego
Department of Bioengineering

Systems Biology Research Group
http:// systemsbiology.ucsd.edu

Phase Plane

U
pt

ak
e 

B

Uptake A

In
fe

as
ib

le
 S

te
ad

y 
St

at
e

Infeasible Steady State

{Sh
ad

ow
 Pr

ice
 A

}

M
eta

bo
lic

Ph
en

oty
pe

 A

{Shadow Price
 B}

Metabolic

Phenotype B

The Phase Plane

Using the shadow prices, we can define a phase plane.   

A phase plane is a two dimensional region that is spanned by 2 metabolic fluxes.  These fluxes are 
typically uptake rates, but this isn’t required.  And then the shadow prices for all the metabolites are 
calculated for all the points within this space, and lines are drawn to demarcate regions of constant 
shadow prices.

The shadow prices are constant within each region and will be different in the other regions.

Each region typically refers to a different basis solution, which implies a different utilization of the 
metabolic pathways or a different metabolic phenotype.

Thus, the utilization of the metabolic pathways will be qualitatively different depending on the region of 
operation within the phase plane.
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Phenotype Phase Plane

• 2-dimensional region
– Spanned by 2 metabolic fluxes

• Typically uptake rates

– Shadow prices (metabolite value) 
are calculated

– lines to demarcate regions of 
constant shadow price

– By definition, metabolic pathway 
utilization is different in each 
region of the phase plane

Summary of  Phenotype Phase Planes

The example on the right indicates 5 distinct phases when comparing glucose supply to oxygen supply.

Typically, PhPPs are drawn with a  carbon source on the x-axis, and oxygen uptake rates on the y-axis.
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Shadow prices and isoclines
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Isoclines

The isoclines represent the combinations of the metabolite uptake rates that will lead to the same value of 
the objective function.  The slope of the isoclines within each region is calculated from the shadow prices; 
thus, it follows that the slope of the isoclines will be different in each region of the PhPP.  

The shadow price is the sensitivity of the objective function (Z) to changes in the availability of 
metabolites (the b vector defines the right hand side of the mass balance constraints).  The numerical 
value on the shadow price can be negative, zero, or positive, depending on the intrinsic value of the 
metabolite.  A ratio of shadow prices between the two external metabolites can be defined. 

The negative sign on α is introduced in anticipation of its interpretation.  The ratio α is the relative change 
in the objective function for the two key exchange fluxes.  In order for the objective function to remain 
constant, an increase in one of the exchange fluxes will be accompanied by a decrease in the other and 
thus we introduce the negative sign on the definition of α.  Therefore, the slope of the isoclines (within 
each region of the PhPP) will be equal to the negative ratio of the x-axis variable shadow price and the y-
axis variable shadow price, and this parameter is termed α.
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Phase Plane With Objective Function Isoclines

The definition of the shadow prices can be used to determine the slope of the isoclines within each region.  
Due to the definition of the phase plane, the slope of the isoclines will be constant within each region, 
however  it will be different in the other regions.

We can draw isoclines for the objective function on the phase plane.  The Isoclines are defined as the lines 
that will provide the same value of the objective function as the parameters on the X and Y axes are 
changed.

For example, as you follow this line, the objective function (here taken as growth rate) will be constant.

The state of the metabolic network can be classified by the value of alpha.

For example, a negative slope as shown here indicates dual substrate limitation.  Isoclines can also be 
horizontal or vertical, and this corresponds to single substrate limitation.  These situations occur when the 
shadow price for one of the substrates goes to zero, and thus has no value to the cell.  Finally, the sign can 
change on one of the shadow prices, this will cause the isoclines to have a positive slope.  This indicates a 
situation where one of the substrates is in excess and is actually inhibitory toward the cell.  This defines a 
“futile” region.
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Characteristics of Phase Planes

• Regions of single substrate limitations
• Regions of dual substrate limitations
• Isoclines
• Line of optimality
• Infeasible regions (fluxes cannot balance)
• Futile regions

Characteristics of defined phases: The regions of the phase plane can be defined based on the contribution of the two substrates to 
the overall objective function:

In regions where the α value is negative, there is dual limitation of the substrates.  Based on the absolute value of α , the substrate 
with a greater contribution toward obtaining the objective (here considered to be biomass production) can be identified.  If the
absolute value of α is greater than unity, the substrate along the x-axis is more valuable toward obtaining the objective, whereas if
the absolute value of α is less than unity, the substrate along the y-axis is more valuable to the objective.

The regions where the isoclines are either horizontal or vertical are regions of single substrate limitation, the α value in these 
regions will be zero or infinite, respectively.  These regions arise when the shadow price for one of the substrates goes to zero, and 
thus has no value to the cell.

Regions in the PhPP can also have a positive α value; these regions are termed “futile” regions.  In these regions one of the 
substrates is inhibitory toward obtaining the objective function, and this substrate will have a positive shadow price.  The metabolic 
operation in this region is wasteful, in that it consumes substrate that it does not need, and is thus unavailable for later utilization.

Finally, due to stoichiometric limitations, there are infeasible steady state regions in the PhPP.  If the substrates are taken up at the 
rates represented by these points, the metabolic network is not able to obey the mass, energy, and redox constraints while 
generating biomass.  The operation of the metabolic network can only transiently operate in such a region.
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Line of Optimality
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Line of Optimality:

The line of optimality is defined as the line representing the optimal relation between the two metabolic 
fluxes corresponding to the axis of the PhPP.  For aerobic growth, this line is interpreted as the optimal 
amount of oxygen to be taken up to allow for the complete oxidation of the substrate.  

The line of optimality is determined by specifying the uptake rate of the substrate along the x-axis and 
allowing any value for the flux along the y-axis.  LP is then used to calculate the optimal value of the 
objective as a function of the y-axis flux.  Once the objective is determined, the corresponding flux value 
for the y-axis is used to plot the line of optimality (LO).  

The LO defines the optimal utilization of the metabolic pathways without limitations on the availability of 
the substrates.
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Phase planes and Extreme 
Pathways

The Relationship Between Phase Planes and Extreme Pathways

In previous lectures we covered the topic of extreme pathways as the generating vectors for cones in high-
dimensional spaces.  It turns out that there is a close relationship between these extreme pathways and 
what is shown in the phase plane.
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Phase Planes as projections of high 
dimensional cones
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Projections of Extreme Pathways

This slide illustrates the projection of the edge of a cone onto a 2-dimensional space.  The 2-dimensional 
space would be formed by the two uptake fluxes or any other two fluxes of interest, and the vector 
corresponding to the edge is drawn in that particular 2-dimensional phase plane.  If that edge corresponds 
to an extreme pathway that is physiologically meaningful, and the cell positions itself close to it, then the 
data will project onto the phase plane very close to that line. This indeed corresponds to the line of 
optimality shown in the numerous slides before this.  The line of optimality is an edge on the cone in a 
high dimension.  
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Phase Boundaries as Pathways
The Oxygen-Succinate Plane
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The Oxygen-Succinate Extreme Pathways in the Phase Plane

This slide shows the projection of a number of extreme pathways calculated from the core E. coli model 
with succinate as the carbon source.  We see that all these pathways form a straight line in the phase 
plane.  One of these pathways corresponds to the line of optimality, and it in return corresponds to the 
extreme pathway with the highest biomass yield. 
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Summary

• Flux balance and capacity constraints form closed polyhedral spaces
• Linear programming can be used to find optimal solutions in this space
• Does require the statement of an objective function and the solution 

will be the corresponding optimal phenotype
• Optimal solutions lie at the edge of the polyhedra
• Shadow prices and reduced costs are used to characterize the optimal 

solution
• A series of LP can be solved to represent a continuous variation in a 

parameter of interest
• All possible combinations of the values of two parameters leads to the 

definition of a phase plane
• The boundaries in the phase plane are edges on the polyhedral cone 

projected into the plane. Thus, the boundaries represent systemic 
pathways
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