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Development of the network-based
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Extreme pathways capture the phenotypic
potential of metabolic reaction networks
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Extreme pathways have the following characteristics:
1) They are aunique and minimal set of basis vectors
2) All possible phenotypes can be represented by non-negative linear combinations of the EPs

3) They represent time-invariant properties of the metabolic network
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Genome-scale ExPA
considerations

There are alarge number of extreme pathways generated for a genome-scale model

The calculation of these extreme pathways poses a significant computational
challenge (enumeration of convex basis is an NP-complete problem, Samatovaet al.
2002)
The number of extreme pathways needed to describe a system increases dramatically
asthe size and connectivity of the system increases

— Thismay be related to the concept that arelatively small increasein the number of genes

results in much more complex organisms.

— 20,000 genes in a nematode compared to 30,000 genes for a human
Large number of extreme pathways can be similar

— Source of robustnessin biological networks

— Importance of studies for grouping pathways and picking out important properties
Special cases for production of single metaboalites (i.e. amino ecids) and the
simultaneous synthesis of small groups of metabolites are computationally tractable
for small genomes
Emergent properties of H. influenzae and H. pylori have already been elucidated
with this approach.
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First, some important considerations for extreme pathway analysis.

It is first important to remember the EXPA of genome-scale networks
results in a tremendously large number of data. The calculation of
these vectors pose a significant computational challenge. In fact the
enumeration of a convex basis has been classified as an NP-complete
problem...the size of the metabolic networks exponentially increases
the computational time to perform the extreme pathway calculation.
This idea of increasing complexity is an interesting point when looking
at the complexity of organisms with small increases in the number of
genes. For example, we see the difference in the number of genes
from a nematode to a human, 20,000 genes to 30,000 genes.

An additional consideration for extreme pathway analysis at a genome-
scale lies in the properties of the pathways themselves. There are
many pathways with only subtle differences in certain reactions that are
used. This property leads to the idea of robustness in metabolic
networks. For this reason there is a significant need to look at methods
for parsing out important properties.

To date, the extreme pathways for amino acid production and
ribonucleotide synthesis in H. influenzae and H. pylori have been
computed, and emergent properties have been characterized.



Approaches to genome-scale
ExPA

Due to computational intractability, models have previously been
segmented into biologically meaningful groups (i.e. amino acid
synthesis, nucleotide synthesis; Schilling and Palsson 2000).

Recent efforts have been made to algorithmically define these groups
(Schuster et al. 2002).

However, the subdivision of the networks excludes the combinatorial
possihilities that occur with the interaction between the subdivisions.

Recent work has involved the analysis of integrated cellular models
(Papin et al. 2002, Price et al. 2002).
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One approach to overcome computational intractability has involved
segmenting the networks into subsystems that have biological meaning.
For example, a full metabolic network can be broken up into reactions
associated with amino acid synthesis, central metabolism, nucleotide
synthesis, lipid metabolism, etc. The extreme pathways of each of
these subsystems can be computed and the interacting metabolites
between these subsystems can be accounted for. However, this
approach involves arbitrary grouping and neglects the combinatorial
possibilities that arise from the interactions of components of the
subsystems.

In order to more precisely define these subsystems, recent work has
involved mathematically defining how these subsystems are defined.
Recent work has also recently been published in which the entire
genome is analyzed under minimal medium conditions.



Extreme pathways of
human red blood cell metabolism
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The Red Blood Cdll
A Model System for in silico Biology

» Relatively small
metabolic network
— 39 metabolites
— 32 internal reactions

* Weéll studied, well
understood system

* A full kinetic model 2
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The Human Red Blood Cell

Previously, extreme pathway analysis was applied to sample systems
without real biological meaning (e.g. Schilling et al., 2000). Such
systems helped in establishing the algorithm and interpreting the results
but provided no real biological insight. At the other extreme, the
analysis has been applied to genome-scale metabolic network resulting
in an immense number of extreme pathways for which a detailed
interpretation is not possible. Only statistical properties of this large set
of data could be obtained yielding limited insight into cellular physiology
(Papin et al., 2002). The human red blood cell provides an attractive
case to study the extreme pathways. Many people argue that you will
never know all the kinetics of most cells so a full cell simulation is not
possible. The RBC is the exception to this rule. Hence we can test
theories of model reduction by working on simplified version of the RBC
in which we focus on only the most important parameters of the system.
This reduced model can then be compared to the full model to see if the
simplified representation is a good approximation of the full cell
simulator.



Extreme pathways in the red blood cell
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Extreme pathways in the
red blood cell

‘Classicd’ glycolysis
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Extreme pathways in the
red blood cell
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Extreme pathways in the
red blood cdll
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Phase Planes as projections of high
dimensional cones

Wiback and Palsson, Biophysical Journal, 2002
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Projection into lower dimensions

As said before, the extreme pathways form the edges of a high-
dimensional flux cone which encompasses all steady state flux
distributions attainable by the network. Since it is hard for most people
to think and see above 3-D, we often project these high-dimensional
cones into lower dimensions (either 2D or 3D) - particularly dimensions
of interest.
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Use of extreme pathwaysto inter pret
whole cell functions-- no kinetics used!

Pathway Projection into ATP and NADPH
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Wiback and Palsson, Biophysical Journal, 2002
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Projection of Pathways Based on Production of Key Cofactors

Here is a projection of the red cell pathways into a 2D flux space with
the key cofactors ATP and NADPH production on the axis. The
projected EPs show the ability of each pathway to make the given
cofactors per glucose uptake. These pathways define the attainable
region — outside of which there is no feasible solution for the cell. This
brings us back to the kinetic red cell model that | spoke of earlier. With
this model we are in the unique position of being able to find the “exact”
solution point. The nominal steady state value is shown with the blue
arrow. The red blood cell's capacity to respond to loads (red region) is
defined as the difference between the steady state operating point (blue
dot) and the edge of the solution space representing the maximum
capabilities of the cell (black dotted line). Any loads outside the solution
space are not attainable. The results from repeated dynamic simulation
of stepwise increasing energy and oxidative loads on the red blood cell
are plotted on the graph with open black circles using the Jamshidi
model (Jamshidi et al., 2001). Note that the kinetic model is slightly
more restrictive than the stoichiometric one.

14



The V., values shape the solution space

v,
™3 \nfiback and Palsson, Biophysical Journal, 2002
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Maximal Flux Capacities

The V., values of the enzymes serve to “cap off” the steady state
solution cone. Changes or alterations in these V __ values (due to
enzyme defects or SNPs) can significantly change the shape of the
steady state solution space. If all the extreme pathways have high
throughput, the solution space is relatively large as shown on the left
(A). However, as shown on the right (B), if one of the V. values is low
due to some sort of defect or significant kinetic regulation, there is a
shift down the p, axis thus significantly shrinking the size and volume of
the steady state solution cone and hence the metabolic capabilities of
the system. The volume of the solution space shrinks significantly
which reduces the number of steady state solutions and hence the
number of homeostatic options available to the cell. Thus vV values
can effectively reduce the solution space and eliminate a large number
of possible states of the network.
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The effect of an enzymopathy on the cell’s
ability to respond to environmental loads

Pathway Projection in ATP and NADPH
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SNPs and the effect on load capacity

This theory can also be illustrated using the 2D cofactor projection from
the earlier red cell pathway work. In this 2-D projection an enzymopathy
has shortened GP1 to GP1' (decreased the minimum Vmax). The cell’sability
to respond to energy loads is decreased as compared with the normal cell.
While there may be no change under homeostatic conditions (the phys steady
state is still in the feasible region) there will be problems as the cdll is placed
under an energy load — as is exactly the case from the results from the SNP

study.
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G6PDH Variants
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Here is an example of the data for the G6PDH variants in which the
Vmax and inhibition constant for NADPH are highlighted. Their location
along the protein is also highlighted as it often corresponds to a key
active site in the protein. As you can see, there is a wide variation of
the constants with no clear pattern emerging.
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These altered parameters can then be put into the model and simulated
to see their systemic effect. In some cases (the non-chronic cases),
the SNPs did not affect the homostatic state and only presented a
problem when the cell was put under a load — this is often the case in
the clinical setting as well where an enzyme defect in the red cells is not
diagnosed until the patient is put under some sort of stress such as a
medicine which gives off oxygen free radicals. The SNPs could then be
tested under loads to see the phenotypic consequences.
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G6PDH Variant Response to Oxidative
L oad
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Here are some results from the G6PDH case in which there appears to
be a distinct difference between the chronic and non-chronic cases of
SNPs. NADPH levels were used to gauge the state of the cell as this is
a defect in the oxidative branch pentose phosphate reactions. Under
normal conditions (i.e. oxidative load, v, = 0) there are differences
between the chronic and non-chronic groups with the chronic group
having a somewhat lower homeostatic steady state NADPH/NADP ratio
than the non-chronic group. When subjected to an oxidative load (v, >
0), noticeable differences between the two groups (chronic and non-
chronic) appear. The NADPH/NADP ratio at the maximum tolerated
oxidative load (v,, = max value) correlates with this ratio in the un-
stressed situation (v,, = 0). The group of chronic hemolytic anemia
patients are clearly separated from the normal and non-chronic group.
A number of the chronic cases can only withstand a very modest
oxidative load.




Extreme pathway analysis of
H. influenzae
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H. influenzae in a bronchiole

Pathol ogy

» Gram-negative pathogen

* Colonizes the upper respiratory mucosa

* Most common cause of bacterial meningitisin
children<5yrs

Statistics
 380,000-600,000 deaths/yr worldwide

Genome Characteristics

* First fully-sequenced genome
* 1.83 Mbp genome length
1,703 estimated genes

Model Characteristics
461 Reactions (412 from the genome)
» 367 Metabolites

http://www.tigr.org/

University of California, San Diego Systems Biology Research Group
Department of Bioengineering http://systemsbiol ogy.ucsd.edu

H. influenzae is a Gram-negative respiratory pathogen which causes
around half a million deaths each year, many from bacterial meningitis.
It was the first genome sequenced and as mentioned is somewhat
smaller than E. coli. Its current metabolic model includes 461 reactions
with 367 metabolites.
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Amino acid production in H. influenzae

INPUTS OUTPUTS
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For the H. influenzae metabolic network, the inputs were constrained to minimal
medium conditions. This is the minimal set of substrates in which the organism can
survive (which, as a side note, is a difficult feature to characterize, but has been
experimentally verified in some organisms, and which is an important feature and
advantage of extreme pathway analysis). As we can see here, from the minimal
medium, in order to synthesize amino acids, H. influenzae uses fructose, glutamate,
ammonia, and oxygen. As outputs, the metabolic network was only allowed to
produce the amino acid, acetate, succinate, and carbon dioxide. These constrained
exchanges with the environment allowed for precise characterizations of the extreme
pathway structure.

Here we see two types of data that which are of interest in this type of analysis. First,
yield is defined as the amount of product per amount of substrate uptake. To
normalize for varied carbon sources (glutamate and fructose), the lysine output was
normalized to the total number of carbon inputted into the system. We can see the
distinct yield values that are achievable by the metabolic network. Of note are these
regions in which there are multiple pathways with identical yield values. It is important
to remember that each of these pathways (or points) is a systemically independent
vector.

In order to further characterize these extreme pathways, a plot was generated to look
at how carbon flowed through the system. Here, each point represents a ratio of
acetate output to carbon dioxide output (both normalized to the carbon input). The
only other sink for the carbon is in lysine. Hence, as we move closer to the origin, the
represented pathway has an increased yield. OK was that dense enough for you?

One interesting characteristic of this carbon fate plot involves the constraining lines
seen here. Another important point that can be seen in the above figure is that we can
have points where the yield is equal but which lie on opposite sides of the space. The
largest yield group in Figure A corresponds to the two red points in Figure B. These
two points represent 231 pathways.
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Carbon Fate Point 1

Lysine Carbon Fates H. influenzae Metabolic Map with Average Flux Values
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At point 1 (from the previous slide) there are 213 pathways. Here we
see an average flux map for the reactions in central metabolism. Note
that the pentose phosphate reactions are not used.



Carbon Fate Point 2
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Note that between points 1 and 2, there
are big differences in central metabolism
(let alone other components of the
network).

Pentose phosphate reactions are used in
one and not the other.

Some reactions associated with the TCA
cycle are used in one and not the other.
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H. influenzae Metabolic Map with Average Flux Values
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Here we see the average flux map for reactions in central metabolism
corresponding to the other carbon fate point. The width of the arrows
represents the average flux value. Note the difference between the two
maps. There is a totally different distribution between the two pathways
that have equivalent yields.
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Pathway Redundancy

The diversity in metabolic maps at nearly equivalent carbon fate points and
yield values motivated a quantitative evaluation of “pathway redundancy.”

* For example, these extreme pathways have the same “ external state”
input: 2A
output: 1 Eand 1 byp
* However, theinternal flux distribution is very different in the two pathways

=> Pathway Redundancy = 2

University of California, San Diego Systems Biology Research Group
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These patterns and the diversity of the underlying internal flux maps,
motivated a quantitative evaluation of this property. Here we introduce
the idea of pathway redundancy. Here is a sample system and these
are two of the three extreme pathways which characterize it. The
yellow lines represent fluxes that are used in the pathway. The light
gray lines represent fluxes which are inactive in the corresponding
extreme pathway. Note that both of the extreme pathways have
equivalent “external states”... they both input 2 moles of metabolite A
and output 1 mole of metabolite E and 1 mole of metabolite byp.
However, both of the pathways have systemically independent ways of
achieving this objective.

Pathway redundancy can then be calculated as the number of “internal
states” per unigue “external state.” In this sample network, the pathway
redundancy would be 2.
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Summary of redundancy valuesin H. influenzae
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The pathway redundancy for amino acid production in H. influenzae
under the conditions described, were calculated. As we can see, there
is approximately an average of 50 internal states per unique external
state. In other words, there are 50 systemically independent ways to
achieve this same objective for amino acid synthesis in H. influenzae.



Extreme pathway analysis of
H. pylori
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Helicobacter pylori in astomach lining

Pathol ogy
» Gram-negative pathogen colonizes the gastric mucosa
« implicated in peptic ulcers and gastric cancer

Statistics
« Infects 30% of US population & ~50% of world population
* 75% of all ulcerslinked toH. pylori infection

Genome Characteristics

< H. pylori 26695 genome fully sequenced in 1997
 1.66 Mbp genome length

« 1,590 estimated genes

« strain J99 sequenced in 1999

Model Characteristics
* 390 Reactions
» 340 Metabolites
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H. pylori is primarily known for its link to 75% of peptic ulcers and
potentially to cases of gastric cancer. It was thought that the stomach
was aseptic because of its acidity, but it is now known that H. pylori is
able to live in the stomach lining where it avoids the immune response
and where the environment is less acidic. Furthermore, the metabolism
of the organism is such that it secretes ammonia, releasing a basic
cloud into its local environment which protects it. The interesting
features of this organism’s metabolism, combined with the release of its
annotated genome sequence in 1997, motivated us to construct a
metabolic model.

The metabolic model for H. pylori is slightly smaller than that of H.
influenzae, with 390 reactions involving 340 metabolites. It's genome is
also of comparable size to that of H. influenzae.
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Summary of redundancy in H. pylori

Case 1l
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Similar to the analysis of H. influenzae, the pathway redundancies for
amino acid synthesis in H. pylori was calculated. As you can already
see, there is an order of magnitude difference between the degree of
redundancy in the two organisms. Another interesting difference is in
the variation of the values. In H. influenzae, we saw large changes for
the different amino acids and under different environmental conditions.
That same fluctuation is not observed here.
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Comparative pathway redundancy

Even with similarly sized genomes, H. influenzae and H. pylori had an order of
magnitude difference in the degree of pathway redundancy for amino acid
production. This serves as an important example of “emergent properties’ that
can only be seen with such genome-scal e analyses.

INPUTS OUTPUTS
Amino acid
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Reconstructed M etabalic
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In silico organism Genome Size ORFsin Genome Reactions in Model — #of PW/UEXV

H. influenzae 183 Mb 1740 461
H. pylori 167 Mb 1590 390
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Since the minimal medium conditions for H. pylori are different than
those of H. influenzae (they have different minimal medium
requirements), direct comparisons between the organisms are difficult
to make. However, accounting for these differences, shows the degree
of variability. The average number of pathways per unique external
state (for the same set of amino acids and with the same external
carbon sinks), there were 46 internal states per external state in H.
influenzae, and 2 internal states per external state in H. pylori.

This suggests and gives a quantitative measure for the amount of
robustness in the organism. It suggests that H. pylori perhaps fits into a
much more defined environment and very specifically fits into its
environmental niche.



Pathway redundancy in H. pylori

* InH. pylori, it was possible to calculate the extreme
pathways for the set of amino acids or for the set of
ribonucleotides.

Product #of PW #of UExV # of PW/UEXV
Equimolar Amino Acids 6032 2825 21
E. coli Ratio Amino Acids 5553 24381 22
Equimolar Ribonucleotides 1325 1164 1.1

Price et al., Genome Research, 2002

The redundancy values for the simultaneous production of
the amino acids was of the same order of magnitude as that
of the individual amino acids.

The redundancy values for ribonucleotide synthesis was
approximately half of that seen in amino acid synthesis.

University of California, San Diego Systems Biology Research Group
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In H. pylori, it was also possible to look at a few small linked outputs.
Interestingly, the redundancy values for the set of amino acids in 1:1
proportions was still about 2. The ratio of the composition of amino
acids in the set was also inspected. The relative amount of each of
amino acid was approximated to that of E. coli (since such datais
unavailable in H. pylori), and still the redundancy was about 2.

Interestingly, the redundancy for the production of ribonucleotides was
nearly half...a little more than one, which implies that there are more
unigue routes for nucleotide synthesis.
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Nitrogen production built into structure of
H. pylori metabolic network

Another interesting feature from the ExPA of H. pylori amino acid production was in the
flow of nitrogen in the system. Important due to the habitat of the microorganism.

Over 80% of the extreme pathways directed more than 80% of the input nitrogen into the
production of ammonia...potentially important for pH regulation in its acidic habitat.
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Since an interesting feature of H. pylori is its ability to survive in an
intensely acidic environment, an analysis of the flow of nitrogen in the
system is also of importance. Here we are looking at a representation
of the more than 6000 extreme pathways associated with the synthesis
of the set of amino acids. Here, the set of amino acids and ammonia
are the only nitrogen sinks in the network. We also allowed urea as an
input in the system (which has been hypothesized as a critical
metabolite...urease is a mass-produced enzyme in H. pylori. The
breakdown of urea results in the production of ammonia). In all of the
cases, more than 80% of the extreme pathways direct more than 80%
of the nitrogen inputted to the synthesis of ammonia...it cannot use the
nitrogen to synthesize amino acids. In addition, in this case, no more
than 40% of the inputted nitrogen can be incorporated into amino acid
synthesis. Since amino acids represent a significant demand of
systemic nitrogen, it has been hypothesized that the flow of nitrogen to
the synthesis of ammonia is “built in” for the H. pylori metabolic network.
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Methodsfor analyzing lar ge sets of
Extreme Pathways

University of California, San Diego

Systems Biology Research Group
Department of Bioengineering

http://systemsbiol ogy.ucsd.edu

The results up until now have illustrated the need for being able to pick
out important information from the vast amounts of data that extreme
pathway analysis generates. To date, some work has been done on
developing methods for doing this very thing.
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Methods for parsing out salient information
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As an example, one such method involves first rewriting the pathway
matrix into a binary form (i.e. 1 if itis used and O if it is not used). Then,
this matrix is pre- and post-multiplied by its transpose. The two
resultant matrices we will call the reaction participation matrix and the
pathway length matrix.

The values in the diagonals of the pathway length matrix are the lengths
of the respective extreme pathways, and are the number of reactions
which participate in the matrix. The values in the off-diagonals of the
matrix are the numbers of reactions in which a given pair of pathways
participates. It is important to remember that extreme pathways are not
simply linear chains of reactions (contrary to the schematic shown
above). Rather, extreme pathways can have multiple inputs and
multiple outputs. Consequently, the “pathway lengths” in the Pathway
Length matrix, are perhaps more precisely characterized as the “size” of
the extreme pathway. These extreme pathway sizes have been
analyzed and interesting characterizations have been made.

In the reaction participation matrix, the diagonal values correspond to
the number of pathways in which a reaction participates. The off-
diagonal values correspond to the number of pathways in which a given
pair of reactions appear together.

As the first schematic tries to demonstrate, one pathway can be “longer”
than another. As the other schematic tries to demonstrate, one reaction
may participate in more pathways than another.

34



Example system for calculating the
pathway length and reaction participation
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Just to review briefly, and perhaps to clarify a little bit, the generation of
the pathway length matrix and the reaction participation matrix.

First, here is a reaction network with 7 metabolites and 6 internal
reactions and 3 exchange fluxes. And here is the extreme pathway
matrix, P, with 3 extreme pathways.

Now, if we pre- and post-multiply the binary pathway matrix by its
transpose, we generate the pathway length and reaction participation
matrices. Note that they are symmetric, so only one half of the values
are shown.

Note that there are 3 extreme pathways. EP1 and EP2 have 6
participating reactions. EP3 has 7 participating reactions. Also note
that extreme pathways 1 and 3 have 5 reactions in common.

In the reaction participation matrix, note that if we look at the reaction
corresponding to flux v1, there are three extreme pathways in which it
participates. Similar characterizations can be seen with the other
reactions. As an example of an off-diagonal value, look at the value
corresponding to fluxes v4 and b2. There are 2 extreme pathways in
which both of the corresponding reactions participates. In the pathway
matrix we can see that v4 and b2 appear together in 2 of the 3 e xtreme
pathways.

Although this demonstration may seem straightforward, the simplicity of
its interpretation for larger networks is powerful and very applicable.
Let’'s now look at a few applications to the data sets from H. influenzae
and H. pylori that we have already been looking at.
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Pathway Length — Product Yield Correlation

Correlation of Extreme Pathway Length and Product Yield
in H. pylori Protein Synthesis
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Here we looked at the extreme pathways for the synthesis of a linked
output... the synthesis of the set of amino acids in H. pylori. The
pathway length and reaction participation matrices were generated for
this data set (note that there are over 6000 extreme pathways in this
data set). The pathway length values ranged from just under 100 to just
over 110. These values were correlated with the amino acid yield of the
respective pathways.

Surprisingly, there was a very poor correlation between these two
variables. This is another important example of an emergent property
that can be observed from a genome-scale analysis like ExXPA. This
has very important implications. A pathway of optimal yield, perhaps
very important for metabolic engineering purposes, can not be identified
by a simple visual inspection. Perhaps one might think that a pathway
with a smaller size might correspond to one in which less carbonor
nitrogen is lost to a byproduct and hence produces a given output
optimally.

The correlations between pathway length and other variables of interest
(for example, the number of carbons in the target product) were also
evaluated. Although some measures had slightly better correlations,
they were all fairly weak correlations.
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Pathway L ength Distributions

H. influenzae H. pylori

* Interestingly, pathway
length distributions
exhibited particular
statistical trends.

There were distinct
trends in the skewness,
number of modes in the
distributions, and other
such properties.
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The pathway length matrices were generated for all of the data sets that
we have previously described (amino acid synthesis in H. influenzae;
amino acid and ribonucleotide synthesis in H. pylori). Here we see the
distributions of pathway lengths for the extreme pathways of a few
representative amino acids. You can see that distinct differences in the
statistical measures between organisms can be seen. As we see here,
there is a general skewness (to the right in the pathway lengths in H.
pylori and to the left in the pathway lengths in H. influenzae). We also
see some bimodal distributions. These types of statistical measures
provide for important investigations to see why such features exst.
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Reaction participation in H. pylori
amino acid synthesis

Reaction Participation in H. pylori
Amino Acid Synthesis
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Non-obvious, systemically correlated reactions

Extreme Pathway 1
Reactions that always appear
together for the synthesis of a
particular product (for example,
reactions1 - and 2 - that
produce E from substrate A in the

sample system to the right).
These reactions may indicate
regulatory structure.

At the least, the correlated groups

provide for interesting hypotheses
for further inspection.

University of California, San Diego Systems Biology Research Group
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Now to move on to some of the characterizations that were made with
the reaction participation matrix. As we saw earlier, the reaction
participation matrix indicates how many extreme pathways a given
reaction (or pair of reactions) participates in. This information can be
readily used to determine which reactions always appear together. For
example, in the sample system to the right, reactions 1 and 2 are active
in both of the extreme pathways shown while the other internal
reactions change. These reactions can be thought of as systemically
correlated. While previous work (Shilling and Palsson, 2000) has used
such an approach to look at correlated reactions in the extreme
pathways for subsystems, this genome-scale analysis takes into
account reactions that might otherwise be separated into subsystems.

Such systemically correlated reactions could be an indication for
regulatory structure. At the least, correlated groups provide for
interesting hypotheses of network objectives and should be further
inspected.
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| nter pretation of transcriptional regulation
with extreme pathway analysis
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Extreme Pathways and Regulatory Constraints

P1is not permitted due to
regulatory constraints

One or more of these
pathways may not be Thisleadsto areduced
feasible, depending on solution space
the environment and bounded by fewer
corresponding regulatory extreme pathways
effects...

Consider the entire

solution space of a
metabolic network,
bounded by extreme
pathways P1-P4...

Covert et al., Journal of
University of California, San Diego Theoretical Biology, 2002 Systems Biology Resear ch Group
Department of Bioengineering http://systemsbiol ogy.ucsd.edu

This slide shows how regulatory constraints reduces the
number of active extreme pathways in a system. Let's assume that
transcriptional regulation is modeled as a Boolean network (see
Thomas 1978 in the References for more detail), and that pathways are
considered “ON” or “OFF” depending on these rules. This basically
means that a certain pathway may or may not be feasible under given
conditions. So if we consider the entire solution space of a metabolic
network, bounded by extreme pathways P1-P4, one or more of these
pathways may not be feasible, depending on the environment and
corresponding regulatory effects and is therefore eliminated from the
boundaries of the space. In the case shown here, P1 is infeasible and
therefore the solution space is reduced and bounded only by P2, P3
and P4.
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Sample Network

Carbon. Sarbon Fex ME REGULATION
A

a  IFNOT(RPb)

a  IFNOT (RPo2)
IFRP02

IFNOT (RPb)
IFNOT (RPh)

IF NOT (RP02)

IFNOT(RPc1)

02 IFNOT(Oxygen)
el IF Carbonl
IFTh
IFR2b

Characteristics Regulation modeled Analysis
21 metabolic reactions Catabolite repression 80 Extreme pathways
4 regulatory proteins Amino acid biosynthesis Forced growth output
7 regulated reactions Oxygen-dependent 5 environmental inputs
Boolean representation Carbon storage 25 = 32 environments
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Department of Bioengineering http://systemsbiol ogy.ucsd.edu

Here is the sample network we will use to illustrate
solution space reduction due to transcriptional regulation. Itis
supposed to represent central metabolism in a “typical” cell, together
with some of the corresponding regulation. Some characteristics, as
well as different types of regulation which can be modeled with this
system, are shown. Overall, with a forced growth output we obtain 80
extreme pathways which characterize this system. Given the 5
environmental inputs (Carbonl, Carbon2, F, H and Oxygen) and
considering each as either “present” or “absent” in the extracellular
medium, we have 32 possible environments which may affect this
system.
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Extreme Pathway Reduction

Total number of extreme pathwaysisreduced from
80 to between 26 and 2
* 67.5%-97.5% reduction

21 of the extreme pathways ar e never
available assolutionsdueto
inconsistent regulation

* P1, P13-28 and P53-56

Covert et al., Journal of
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The first thing we notice is that none of the conditions
have all 80 pathways available to them. In fact, the largest number of
pathways available to the system under any condition is 26 and the
smallest is 2 (not counting those environments incapable of sustaining
growth). The incorporation of regulatory constraints can therefore
greatly reduce the number of feasible extreme pathways. If you look
carefully at the list you will also notice that certain environments have
identical pathway lists or lists which are subsets of other lists.

Another interesting observation which can be made from
these results is that 21 of the extreme pathways are never available as
feasible solutions. This is due to inconsistent regulation in the extreme
pathway’s flux distribution. Pathway 13, for example, has a flux
distribution as shown, where the active fluxes are red if active, or green
to indicate an anaerobic isozyme (aerobic isozymes are generally
shown in purple in these diagrams as you'll see later). Now in this
case, the oxidative reactions are active, which are only expressed
under aerobic conditions, but also isozymes which make up this
simplified TCA cycle are also expressed. These isozymes are only
active under anaerobic conditions! Therefore, this flux distribution is
always infeasible due to regulatory constraints.
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Example; C1, C2, 02 (ExPA)

All possible extreme pathways Environment-independent Environment-specificity: Environment-specific
regulation C1, C2and 02 regulation: R5b, Tc2

Pathway reduction
- Removeall inconsistent pathways
o Environment-independent regulatory constraints
o Environmental inconsistencies
o Environmental-dependent regulatory constraints
- Constrained solution space
o 4 extreme pathways
o Corresponds to Phenotypic Phase Plane

Covert et al., Journal of

University of California, San Diego
Y & = Theoretical Biology, 2002

Department of Bioengineering

Let’'s examine one of these environments in greater detail
—the Carbonl, Carbon2, Oxygen environment. Starting with 80
pathways, we first remove the pathways which are infeasible due to
inconsistent regulation — environment-independent regulation as
discussed in the last slide. Next we remove any pathways which use H
or F (only C1, C2 and Oxygen are available). Finally, the regulatory
constraints for the environment indicate that R5b and Tc2 may not be
used, so we remove any pathways which require those reactions. We
are left with 4 pathways. Once these pathways have been identified,
we may define the solution cone (shown here as a 3-dimensional
projection on the Carbonl Uptake Rate — Oxygen Uptake Rate —
Growth Rate axis). P30 is the line of optimality. You will see later in the
course and briefly on the next slide that this space will correspond to
the phenotypic phase plane of this system.
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Complex medium: Regulation of pathways
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* Number of extreme pathways is only reduced to 26
* Moreflexibility in the system

Systems Biology Research Group
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Here is the most complex environment — all 5 of the inputs
are present. In this case the reactions R2a, R5b, R7, R8a and Tc2 are
repressed, reducing the number of extreme pathways to 6, as we
mentioned earlier. Here you can also see a three and two-dimensional
projection of the solution space, both of which show more flexibility in
the system.
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Summary

Genome-scal e metabolic networks are being reconstructed.

Extreme pathway analysis of representative systems haveillustrated
important features.

Extreme pathway analysis can be used to elucidate the genotype-
phenotype relationship

Extreme pathway analysis of genome-scale models have found new
emergent properties.

Incorporation of transcriptional regulation will provide for aneven
greater physiological characterization.

University of California, San Diego Systems Biology Research Group
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