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Bernhard Palsson

Hougen Lecture #2

Oct 26th, 2000

Cellular part catalogs;
reconstructing biochemical reaction

networks

INTRODUCTION

Now that HT experimental approaches give us parts catalogs, we can begin to
assess the piece-wise interactions between gene products.  These pair-wise
interactions will lead to the reconstruction of biochemical reaction networks.
This reconstruction process is the subject of lecture #2.



44

Lecture #2: Outline
• The Dogma of in silico  Biology

– Pair-wise interactions

– Networks

– Emergent properties and biological function

• Why Bio/Chemical-engineering

• Network reconstruction
– Genomic data

– Biochemical information

– Physiology

• Connectivities

• Why construct mathematical models?

LECTURE #2
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Evolution of Bioinformatic Databases
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100%

60%
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PUTTING IT IN PERSPCTIVE

This slide provides just a crude perspective of where we stand today in terms of
the evolution of bioinformatic databases and scientific information.

Clearly we have the capability to sequence a complete genome and through
genome annotation techniques we can currently assign function to roughly 2/3
of the coding regions in a genome.

And now with the rise of proteomics and expression profiling technologies we
are beginning to gain insight on how the genome is utilized by an organism
under various environmental conditions, offering us snapshots of the dynamics
within the cell.

If we look ahead into the not too distant future we can expect to have enormous
amounts of information pertaining to the content, structure, and expression of
the genotype.

How do we use all of this genomic and biochemical information to gain insight
into the relationship between an organism’s genotype and its phenotype?
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“The Chemistry of Life”
Interesting historical analogies with chemistry

• Sequencing the human genome and functional
assignment of its 50,000 to 100,000 genes is analogous to
the late 1800’s definition of the periodic table (Landers,
Science, 25 Oct 1996)

• Establishing the major genetic circuits is analogous to
making the “molecules of life” comprised of the
‘elements” in this table

• Or,
elements molecules

genes genetic circuits

THE LANDER ANALOGY

Eric Landers drew this interesting analogy between the history of chemistry and
biology.  About one hundred years ago chemists were busy filling in the
periodic table.  This table represents the atoms that then are build chemical
compounds.  According to Landers, we are in a large sense constructing an
periodic table of life by identifying all the genes that are found in organisms.
Then particular combinations of these elements (actually something analogous
to isotopes since there are species specific variations in the gene sequences) are
put together to build a particular organism.
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But Genes are Communal

• Few, if any, genes/gene products act alone

• Essentially all gene functions rely on collaborating genes

• Cellular functions are the result of coordinated action of
collaborating genes

• The estimated minimal gene set (256 in number) in parasitic
bacteria performs 12 cellular functions

• The activity of the 70,000 to 100,000 human genes will be
reduced to a much smaller number of cellular functions (perhaps
as few as 1000)

GENES WORK TOGETHER

With very few exceptions all cellular functions are reliant on multiple gene
products.  So although the central dogma describes the process of protein
molecules from the information encoded on a DNA sequence, the proteins have
individual chemical functions.  All these chemical functions together form a
biological process.  It appears that most cellular processes require on the order
of 20 to 70 different gene products.
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‘Dogma’ of  in silico Biology
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(reverse)
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Biological 
properties

THE DOGMA OF IN SILICO BIOLOGY

Thus we are forced to move beyond the central dogma of molecular biology
when trying to reconstruct cellular functions from the component list.  First we
must identify the pair-wise interactions between the individual gene products.
Then we must construct the networks that result from the totality of such pair-
wise interactions.  There are many in vivo and in silico methods to accomplish
this task.  We will describe some of these in this lecture.

Then we wish to study the properties of these networks.  These properties are
those of the whole and represent biological properties.  Examples include,
redundancy, robustness, built in oscillations, etc.  These properties cannot be
deduced from the components alone.

Some of the methods available for such analysis will be described in subsequent
lectures.
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coordinated function

From Genomics to Genetic Circuits
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mRNA
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Gene ProductsGene Products
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DNA SequenceDNA Sequence

A B C D

ACTGTCGAACTGGACTTCAGCTTGATCGGAACGTCAATCGACTACGTAGTCAT

GENETIC CIRCUITS

The relationship between the genotype and the phenotype is complex, highly
non-linear and cannot be predicted from simply cataloging and assigning gene
functions to genes found in a genome.

Since cellular functions rely on the coordinated activity of multiple gene
products, the inter-relatedness and connectivity of these elements becomes
critical.

The coordinated action of multiple gene products can be viewed as a network,
or a "GENETIC CIRCUIT,” which is the collection of different gene products
that together are required to execute a particular function.

Thus if we are to understand how cellular functions operate, the function of
every gene must be placed in the context of its role in attaining the set goals of a
cellular function.

This "holistic" approach to the study of cellular function is centered around the
concept of a genetic circuit.
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Metabolism Transport Transcription Translation

Signal Transduction
Cell Division Cell Adhesion

Cell Differentiation

Cell Motion Cell Death

Mass & energyMass & energy Information TransferInformation Transfer Cell Fate ProcessesCell Fate Processes

Genetic CircuitsGenetic Circuits

Evolutionary
Dynamics

Gene Transfer
Therapeutic
Intervention

Metabolic 
Engineering

Cellular 
Engineering

Tissue 
Engineering

CLASSIFICATION OF GENETIC CIRCUITS

Although we do not know all the genetic circuits found on a genome we can still
begin to classify them.  A coarse grained classification is illustrated in this slide:

1.  Cells allocate their energy and material resources through metabolism.  It is
universal and can be called the ‘chemical engine’ that drives the living process.
Metabolism consists of a complex set of transforming chemical reactions and
associated transport reactions.  We know much about metabolism as it has been
studied since the 1930s.

2.  The processing, maintenance, and transmission of the information carried on
the DNA is also universal. All living organisms have processes that carry out
these tasks.  Again we do know quite a bit about these processes and there are
strong similarities amongst different organisms.

3. In multi cellular organisms, the cells must coordinate their activities relative
to one-another.  These processes are becoming better understood, but are not as
well established as 1. and 2. above. For instance many of the gene products
associated with programmed cell death (apoptosis) are beginning to be
identified but we may not know their biochemical functions

The slide also illustrates how these groups of genetic circuits are fundamental to
the bioengineering of various cellular functions and organism properties.



51

Properties of Genetic Circuits

Characteristics:
• They are complex

• They are autonomous

• They execute particular functions

• They are flexible and redundant

• They have “emergent properties”

• They are conserved, but can adjust

Analysis methods:
• Bioinformatics

• Control theory

• Transport and kinetic theory

• Systems science

• Bifurcation analysis

• Evolutionary dynamics

HOW WILL WE STUDY GENETIC CIRCUITS?

The objective of studying genetic circuits is to analyze, interpret, and predict the
relationship between the genotype and the phenotype.

Although not all the fundamental properties of genetic circuits are known at
present, some important ones can be stated.

In general they are complex with many components which offer a degree of
flexibility in functioning and in evolving. Once genes are expressed, the
coordinated function of the gene products is autonomous, and embedded within
these built in controls are the capabilities to perform creative functions.

For each of these properties we can look to accompanying theories and
analytical tools such as those listed here to help study these circuits.

Of course this only offers a glimpse into the set of existing tools which can be
utilized, and the development of novel approaches to study genetic circuits is
needed.
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Genetic Circuits;
a different point of view

• Bioinformatics: a way to define, classify, and cross-species
correlate genetic circuits

• Gene therapy:  not replacing a defective gene but fixing a
malfunctioning circuit

• View evolution as a process of tuning and acquiring genetic
circuits

• Genomic taxonomy based on genetic circuitry
• Bioengineer ex vivo procedures to tune genetic circuits
• Fundamental to applied biology; e.g. metabolic and tissue

engineering
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Analysis of Genetic Circuits
• Connectivities

– Uses of graph theory and related topology

• Limitations imposed by stoichiometry and solution spaces
– Convex analysis and pathways as edges of cones

• Flux-balance analysis for metabolic circuits
– Capacity constraints and closing solution spaces

– Life on the edge

• Digital/Boolean circuit analysis
– regulatory networks and shaping of solution spaces

• Temporal decomposition using modal analysis
– Determining location in solution spaces--moving to the edge

– Dynamic structure vs.. physiological function relationships

– Simplicity from complexity

ANALYSIS

The following lectures will outline the approach of the successive imposition of
governing constraints.  This slide illustrates some of these constraints and the
order in which we shall ally them.
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Reductionistic
Approach
(Genome Sequencing,
Expression profiling,
Proteomics, etc)

Integrative
Approach
   (Bioinformatics, 
    Systems Science,
    Mathematical Models
    Computer Simulation)

20th Century
Biology

Reconstructing Cellular Functions

21th Century
Biology

REDUCTIONISM REVERSED

It is thus becoming clear that we need to reverse the process on the left-hand
side, and to study how these components interact to form complex systems.

This poses the question, given the complete genomic sequence, is it possible to
reconstruct the functions of a cellular or biological system?

The process of reconstructing the biological system from the reductionist
information will rely on bioinformatics to identify the “parts catalogue” if you
will.

However, the parts catalogue does not contain functional information.  For
example, listing all the parts of car, does not even begin to describe the how the
the automobile works.

Therefore, to understand multigenic functions, a systems science analysis is
required.
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Why Bio/chemical-engineering?

• Information intensive-- computer science

• Requires computations

• Each component of circuit obeys P/C principles
(chemical kinetics, thermodynamics, biomechanics)

• Simultaneous action of multiple gene products
(systems analysis, control theory)

• Most of these issues found in to days BioE/ChE
curricula
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Curricular needs
• I. HT technologies: teaching of the underlying principles and technologies that go into HT devices.

• Basic biochemistry (DNA, hybridization, etc)
• Optics (fluorescent detection methods, confocal microscopy, etc) ,
• Molecular separation methods (electrophoresis, etc),
• Analytical chemistry methods (mass spec, etc),
• Technology development (automation, miniaturization and multi-plexing)

• II. Informatics: teaching the underlying principles of biological information processing, storage and retrieval.

• Computer science (databases, algorithm design, programming, web resources, etc)
• Statistics and algorithms (homology searches, alignment methods, etc)
• Black box methods (clustering, pattern recognition, etc)

• III.  Mathematical model building: teaching of the art and science that goes into constructing mathematical
models, solving them and interpreting the results.

• Mathematics (calculus and linear algebra)
• Numerical methods (scientific computing, etc)
• Modeling techniques (dimensionless groups, model reduction, etc)
• Systems science (dynamic simulation, control theory, system identification, etc)
• Biophysics (biomechanics, transport phenomena, etc)

NEW CURRICULA

New degree programs in this area will be primarily comprised of three
components.  First, fundamental understanding of the under-pinings of the high-
throughput experimental technologies.  Second, the complex informatics
infrastructure that comes with the high volumes of data being generated. Third,
we need to be able to mathematically describe all the data generated using the
governing P/C principles to construct computer models of complex biological
functions.

Upon careful examination of chemical and bioengineering curricula, about 2/3
of what is needed for this new curricula is found therein.
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Reconstructing Metabolic Networks

NETWORK RECONSTRUCTION

Given this background and historic perspective we now begin the process of
developing systems or in silico biology.  We shall first discuss network
reconstruction.
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Network
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Cell
Physiology

Quantitative
Analytical
Methods
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Cell and molecular biology

New
Independent
Experimental
Information

Reconstructing Metabolic Networks

TIBS, 26: 179-
186 (2001)

THE RECONSTRUCTION PROCESS

There are three principal types of data for network reconstruction: genomic,
biochemical, and physiological.  Once the network is formulated, then
mathematical methods can be applied to assess its properties.  The
reconstruction process will be outlined for H. pylori in the slides to follow.

At present this process cannot be automated, and in particular much human
input and interpretation is required in reading all the pertinent literature on
known biochemical activity reported for the organism in question and to
interpret its physiological functions.

At present, this process takes a full time effort for 3 to 6 months for a single
individual depending on the complexity of the organism studied and the amount
of experimental data that is available.
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Balance Equations:

A:    -v1 -b1 = 0
B:    v1 +v4 -v2 -v3 = 0
C:    v2 -v5 -v6 -b2 = 0
D:    v3 +v5 -v4 -v7 -b3 = 0
E:    v6 +v1 -b4 = 0

Translating Biochemistry into Linear Algebra

Matrix Notation
S • v  =  0

flux enzyme gene
  v1 galactose transporter mglA, maglB
  v2 uridyltransferase galT
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Biochemical Reaction Network

CASTING GENOMIC INFORMATION INTO

CONNECTIVITY MATRICES

Thus we can translate the biochemistry of a reaction network directly into realm
of linear algebra in the form of a stoichiometric matrix.  Beginning with the
gene products of a system we can determine the interconversions of metabolites
which occur and then simply take mass balances around each of these
metabolites and represent this in the form of a stoichiometric matrix to complete
the translation.  Within the stoichiometric matrix lies all of the structural
information and the architecture of the network.  Having the matrix in this form
allows for a detailed analysis based on concepts of linear algebra and convex
analysis.
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From the genotype to the stoichiometric matrix

VA VBC VD1 VD2

• • • •

• • • •

• • • •
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gene A

enzyme A

gene B   gene C

enzyme complex B/C
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S=

one gene
one enzyme
one reaction

two genes
one enzyme
one reaction

one gene
one enzyme
two reactions

# of genes

# of enzyme 
complexes

# of enzyme
catalyzed reactions

THE NUMBER OF REACTIONS IN A METABOLIC GENOTYPE IS
NOT THE SAME AS THE NUMBER OF GENES IN THE GENOTYPE

There is not a one-to-one correspondence between the number of genes that are
associated with metabolism and the number of chemical transformations that
take place.  This difference is due to several factors.

First, many enzymes are oligomeric complexes that contain more than one
protein chain.  These complexes are formed by non-covalent binding, or
association of several different protein molecules.  Hemoglobin, being a
tetramer of two alpha and two beta globulins is perhaps the best know example
of a protein oligomer.

Second, enzymes can catalyze  more than one chemical reaction.  This feature is
often referred to as substrate promiscuity.  These chemical transformations tend
to be similar.

These features give rise to a different number of genes from the number of
enzymes (or enzyme complexes) and the number of chemical reactions that take
place.  All of these situations can be accounted for with the stoichiometric
matrix as illustrated.



61

Metabolic Map
(not all connections shown)

THE METABOLIC MAP REPRESENTATION OF THE ESCHERICHIA
COLI K-12 METABOLIC GENOTYPE

The metabolic map of the E. coli K-12 metabolic genotype divided into
metabolic sectors based on a biochemical rationale:
Gray: Alternative carbon source metabolism
Light gray:  The core metabolic pathways
Orange: Amino acid biosynthesis
Green: Vitamin and co-factor metabolism
Yellow: Nucleotide synthesis
Blue: Cell wall synthesis
Purple: Fatty acid synthesis

Not all the 720 reactions are shown.  Highly connected metabolites, such as
ATP, PEP and pyruvate are linked to dozens of reactions.  Showing all of these
connections would make this representation visually unattractive.  However,
these connections should not be overlooked as they play a key role in the
stoichiometric characteristics of metabolism.
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The Size of Reconstructed Networks
(dimensions of S are metabolites x reactions)

  E. coli H. influ. H. pylori Yeast
PNAS 5/00 JBC 6/99

Reactions    739 461 381 1212
Metabolites  442 367          332 801
Genes    660 400 290 697

DIMENSIONS OF S

This table shows the size of the reconstructed metabolic networks by our
research group.  There are 350 to 800 metabolites present and 450-900 reactions
depending on the complexity of the organism.

Note that the gene numbers correspond only to those gene products that
participate directly in the reactions represented in the network.  None of the
associated regulatory or structural protein are included.  As these models expand
to account for regulation of gene expression, transcription and translation, the
number of genes represented will increase greatly.
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Pathology
• Gram-negative pathogen colonizes the gastric mucosa
• major causative agent of peptic ulcers and gastric cancer
• inaccessible to human immune system
• survives in 4.0 – 7.0 pH range

Statistics
• Infects 30% of US population & ~50% of World popul.
• 75% of all ulcers are caused by HP (aspirin)
• correlates with socio-economic status

Genome Characteristics
• genome fully sequenced in  August ‘97
• 1.66 Mbp genome length
• 1590 estimated genes

Helicobacter pylori Profile

Helicobacter pylori is a spiral shaped bacterium that lives in the stomach and
duodenum (section of intestine just below stomach). It has a unique way of
adapting in the harsh environment of the stomach.

The inside of the stomach is bathed in about half a gallon of gastric juice every
day. Gastric juice is composed of digestive enzymes and concentrated
hydrochloric acid, which can readily tear apart the toughest food or
microorganism. Bacteria, viruses, and yesterday’s steak dinner are all consumed
in this deadly bath of chemicals. It used to be thought that the stomach
contained no bacteria and was actually sterile, but Helicobacter pylori changed
all that.

The stomach is protected from its own gastric juice by a thick layer of mucus
that covers the stomach lining. Helicobacter pylori takes advantage of this
protection by living in the mucus lining.
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Case Study:  H. pylori
•Spiral shaped bacterium

•Found in the stomach and
duodenum, in the thick layer of
mucus covering the stomach lining

•Protected from gastric juice

•Urease enzyme creates local basic
environment

UREA  CO2 +2 NH3

•Causes gastritis and stomach
ulcers (Warren and Marshall, 1984)

Once H. pylori is safely ensconced in the mucus, it is able to fight the stomach
acid that does reach it with an enzyme it possesses called urease. Urease
converts urea, of which there is an abundant supply in the stomach (from saliva
and gastric juices), into bicarbonate and ammonia, which are strong bases. This
creates a cloud of acid neutralizing chemicals around the H. pylori, protecting it
from the acid in the stomach. The reaction of urea hydrolysis (urea is broken
down to ammonia and carbon dioxide) is shown. This reaction is important for
diagnosis of H. pylori by the breath test.
 (from www.hpylori.com)

Marshall and Warren were able to demonstrate a strong association between the
presence of H pylori and the finding of inflammation on gastric biopsy
(Marshall & Warren, 1984). People who did not have gastritis did not have the
organism, a finding confirmed in a number of studies.  Marshall elegantly
fulfilled Koch's postulates for the role of H. pylori in antral gastritis with self
administration of H. pylori, and also showed that it could be cured by use of
antibiotics and bismuth salts. (from www.jr2.ox.ac.uk)

Another defense H. pylori has is that the body's natural defenses cannot reach
the bacterium in the mucus lining of the stomach. The immune system will
respond to an H. pylori infection by sending white cells, killer T cells, and other
infection fighting agents. However, these potential H. pylori eradicators cannot
reach the infection, because they cannot easily get through stomach lining.
Extra nutrients are sent to reinforce the white cells, and the H. pylori can feed
on this. Within a few days, gastritis and perhaps eventually a peptic ulcer
results. It may not be H. pylori itself which causes peptic ulcer, but rather the
inflammation of the stomach lining; i.e. the response to H. pylori.
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Clinical Significance of H. pylori

•Immune response cannot reach the infection
through stomach lining

•Immune response buildup degrades stomach
lining cells (superoxide radicals) – gastritis or
peptic ulcers can result within days

•H. pylori feeds on nutrients sent to reinforce the white cells

•Carried by >50% of world’s population, favoring the poor (Third
World countries) and the elderly

•Famous victims:  James Joyce , Ayatolla Komheini , George Bush ,
Pope John Paul II , Imelda Marcos , Stonewall Jackson all had H.pylori

H. pylori is believed to be transmitted orally. Many researchers think that H.
pylori is transmitted orally by means of fecal matter through the ingestion of
waste tainted food or water. In addition, it is possible that H. pylori could be
transmitted from the stomach to the mouth through gastro-esophageal reflux (in
which a small amount of the stomach's contents is involuntarily forced up the
esophagus) or belching, common symptoms of gastritis. The bacterium could
then be transmitted through oral contact.

In general, the following statements can be made to summarize prevalence of H.
pylori in Western countries:

•H. pylori affects about 20% of persons below the age of 40 years, and 50% of
those above the age of 60 years.

•H. pylori is uncommon in young children.

•Low socio-economic status predicts H.pylori infection.

•Immigration is responsible for isolated areas of high prevalence in some
Western countries.

In developing countries most adults are infected. Acquisition occurs in about
10% of children per annum between the ages of 2 and 8 years so that most are
infected by their teens. It is evident from careful surveys that the majority of
persons in the world are infected with H.. pylori. (from www.hpylori.com)
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Metabolism of H. pylori can be constructed since:
 • Genome sequence of H. pylori is available
 • A high % of ORFs have functional assignments
 • The biochemical functionality of gene products are known

Modeling H. Pylori:

•  Genomic Database (e.g. KEGG and TIGR)

•  Biochemical Reactions

•  Literature Review

•  Completing the metabolic pathways

•  Analysis

Metabolic reconstruction:

RECONSTRUCTING THE METABOLIC NETWORK

The basis of the metabolic model we will construct for H. pylori is genomic
data.  Constructing this model is only possible if we  know most or all of the
metabolic reactions which occur in the cell.  For H. pylori, the genome sequence
is finished and available publicly.  Furthermore, because most of the open
reading frames (ORFs) have been given functional assignments, especially
where metabolism is concerned, and because in most cases, we know which
reactions are catalyzed by these genes, we are able to make an in silico model.

To complete this model will require knowledge of the relevant biochemical
reactions in H. pylori metabolism and the genes which catalyze these reactions.
For this information, we turn to the publicly-available Genomic Databases as
well as pertinent literature.  Finally, we try to complete the metabolic pathways,
inferring the presence of various genes based on experimental data.  Each of
these steps will be discussed in more detail in the following slides.
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Genomic Database (e.g. Kegg and
TIGR) :

KEGG: Kyoto Encyclopedia of
Genes and Genomes

TIGR: The Institute for
Genomic Research

MINING DATABASES

Above are details from the home pages of two very useful genomic databases,
the Kyoto Encyclopedia of Genes and Genomes (KEGG) and The Institute for
Genomic Research (TIGR).  Their websites are:

KEGG:  www. kegg.com

TIGR:  www.tigr.org

It is instructive to surf these sites on your own and become familiar with them.
They contain the fully sequenced genomes of many organisms, including H.
pylori.  In many cases, the ORF assignments are also found in these databases,
as well as functionality.  Both sites organize the known genes by locus number
(location on the DNA strand), functionality, and gene name, making it very easy
to find genes of interest.
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KEGG: Kyoto
Encyclopedia of Genes and

Genomes:

• Genes

• Gene Products

• Metabolic Pathways

THE IMPORTANCE OF METABOLIC MAPS

One interesting way KEGG uses to organize its genomic information is by using
these reaction network “maps”.  The above picture is not so clear, so we
recommend that you enter the KEGG website and view it on your own.  The
above map shows glycolosis.  Arrows connect various metabolites to each other,
indicating that one metabolite can be converted to another in a reaction.  The
boxes which stand beside the arrows are the enzymes which catalyze these
reactions.

KEGG uses the same maps for many organisms, so not all of the pathways
shown in this map are actually available to H. pylori.  Some are for E. coli, for
example.  The genes actually found in H. pylori, according to this map, are the
ones which are highlighted in green.
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Biochemical Reactions:

Reaction:

ATP + D-Glucose <=> ADP + D-Glucose 6-phosphate

Enzyme: Glucokinase

Gene: glk

THE CHEMICAL REACTION EQUATION

For example, the enzyme which catalyzes the above reaction, D-Glucose
converting to D-Glucose-6-phosphate as ATP is converted to ADP, is called
Glucokinase.  The gene which encodes this enzyme is commonly called glk.

If we were trying to determine whether or not glycolysis occurred in H. pylori,
we would search in KEGG and TIGR for the relevant genes.  The gene glk
would be found in both of these databases.  Once this gene had been positively
identified, preferably by both web-based sources, we would add the enzyme that
this gene encodes and include its corresponding reaction to our model.
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Literature Review: A Valuable Tool

Glucose G-6-P F-6-P  FDP

H. pylori Glycolysis according to KEGG:

H. pylori Glycolysis according to Hoffman et al. (1996):

Glucose G-6-P F-6-P  FDP

THE NEED FOR USING

PHYSIOLOGY AND INFERRING REACTIONS

Although the model has been mostly determined using various computer
databases to find annotated genes, it is not yet complete.  Careful study will
show the absence of enzymes catalyzing reactions which most likely occur in
the thriving organism.  In these cases, where the enzyme has not yet been
identified, we review the relevant literature to see if various research groups
have determined the presence or absence of particular enzymes.  For example,
in the above case, both KEGG and TIGR give no indication that
phosphofructokinase is found in H. pylori.  This could mean that H. pylori is not
able to produce 1,6-Fructosebisphosphate (FDP) from Glucose, although there
may be other pathways by which FDP is produced.

Careful review of the literature reveals that the Phosphfructokinase enzyme may
have been identified by Hoffman et. al. in 1996.  Other scientists, however,
dispute this claim.  After thoroughly examining studies of H. pylori metabolism,
we will decide whether or not to include this enzyme and the reaction it
catalyzes into our model..
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Filling in the
Gaps

THE NEED FOR USING

PHYSIOLOGY AND INFERRING REACTIONS,

CONT’D

Finally, even after we have searched the on-line databases and all of the relevant
literature, there is still a high probability that several necessary reactions will be
missing from the model.  This is because the ORFs for the genes in the genome
have not yet been identified and/or linked to these reactions.  This is one of the
most exciting parts of building a model, because we will decide, based on our
own knowledge of how H. pylori grows, determine that a gene is present simply
because it must be present to for H. pylori to function as has been determined
experimentally.

By “filling in the gaps” in this way, we have the potential to drive further
genomic research, determining the presence of genes in silico.
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Genome Annotation

Physiology

Inferred

Biochemistry

22.3%

8.4%

4.2%

16.5%

1.8%

32.3%

14.4%

Total Network Reactions 381
Reactions included in:

Genome Annotation 278
Biochemistry 86
Physiology 124

Inferred Reactions 55

H. pylori  Metabolic Network(a)

Missing Reactions

False Reactions

Real Metabolic Network

Correct Reactions

(b)

The reaction complement
of a reconstructed
network

Issues of completeness
and false members of
reaction complement for
poorly characterized
organisms

Regarding the construction and analysis of microbial metabolic models, the
primary issues relating to construction are that first, not all of the reactions
suggested by these models are found directly in the databases or the biochemical
literature; and second, not all of the metabolic genes actually present in the
genotype are accounted for or even noted in the model, because their functions
are as yet undiscovered (see part (b) of the figure).  For the reconstructed
metabolic network (see part (a) of the figure), a “real metabolic network”, (i.e.
the actual set of all the relevant reactions that occur in H. pylori strain 26695)
exists.  This network, surrounded by a dashed line, is superimposed on the
network defined by our model.  The lighter area is the set of all reactions that
are found both in strain 26695 and in our model, the “correct” reactions.  The
enclosed area in white represents “false” reactions that were included in the
model but do not actually occur in H. pylori strain 26695.  These reactions
represent mistaken assumptions used in creating the model.

The second issue is the inverse problem: many of the proteins synthesized by
the organism are not accounted for in the metabolic reconstruction.  These
“missing reactions” are shown by the darker area in part (b) of the figure.  It is
likely that some of the metabolic reactions that are catalyzed by the organism
are as yet undiscovered.  This implies that functionalities open to the organism
are neglected by the model.
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Finding Orphan ORFs:
Take gene sequences from other organisms and compare them

to all H. pylori ORFs

Model Name Organism HP Locus Similarity Identity
Alanine transaminase Schizosaccharomyces pombe HP0672 35.54% 25.73%

asparagine transport protein Salmonella typhimurium HP1017 43.86% 32.63%
Cytidylate kinase Sus scrofa (Pig) HP0618 41.40% 30.65%

Dihydrofolate reductase Leishmania tarentolae HP0561 39.59% 30.20%
dihydroneopterin aldolase Pneumocystis carinii HP1232 41.02% 28.15%

Glutaminase Pseudomonas sp. (strain 7A) HP0723 54.57% 44.51%
Histidine transporter Campylobacter jejuni HP0940 40.41% 29.80%

Tetraacyldisaccharide 4’ kinase Francisella novicida HP0328 42.34% 29.20%
Lysine transporter/permease Escherichia coli HP1017 49.25% 37.10%

Malate dehydrogenase Corynebacterium glutamicum HP0086 36.81% 25.93%
O-Succinylbenzoate-CoA ligase Staphylococcus aureus HP1045 33.95% 23.66%

Isochorismate synthase 1 Pseudomonas aeruginosa HP1282 32.58% 21.80%
Aspartate oxidase Synechocystis sp. HP0192 42.08% 30.94%

Ornithine transaminase Escherichia coli HP0976 39.17% 27.74%
Phenlyalanine transporter Escherichia coli HP1017 44.20% 30.64%

Sulfate transporter Synechococcus sp. (strain PCC 7942) HP0474 38.81% 26.48%
Threonine transporter Escherichia coli HP0133 50.00% 33.33%

Tryptophan transporter Saccharomyces cerevisiae HP1017 40.68% 31.94%
5'-Nucleotidase Escherichia coli HP0104 36.71% 25.76%

Enzymes included in the in silico H. pylori strain without direct evidence, with locus numbers of 
 ORFs with significant similarity to genes encoding these enzymes in other organisms.

These metabolic network reconstruction issues can be resolved in part as the
model is applied to various analyses.  For example, the metabolic H. pylori
model was used to reexamine the annotation of the metabolic network.  All of
the genes that were included in the reconstruction of H. pylori metabolism
without direct genomic or biochemical evidence can be thought of as
hypothetical.  The presence of these hypothetical genes can be determined by
collecting the sequences of other organisms’ copies of the hypothetical genes
and using BLAST to compare them with the H. pylori genome sequence.  The
genes that are found to be significantly homologous to loci in the H. pylori
genome sequence can then be studied experimentally to verify their proposed
function based on the reconstruction and BLAST analysis.
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HP Locus Organism Gene Product Name Similarity Identity
HP0086 Corynebacterium glutamicum Malate dehydrogenase 36.81% 25.93%
HP0104 Escherichia coli 5'-Nucleotidase 36.71% 25.76%
HP0133 Escherichia coli Threonine transporter 50.00% 33.33%
HP0192 Synechocystis sp. Aspartate oxidase 42.08% 30.94%
HP0328 Francisella novicida Tetraacyldisaccharide 4’ kinase 42.34% 29.20%
HP0474 Synechococcus sp. (strain PCC 7942) Sulfate transporter 38.81% 26.48%
HP0561 Leishmania tarentolae Dihydrofolate reductase 39.59% 30.20%
HP0618 Sus scrofa (Pig) Cytidylate kinase 41.40% 30.65%
HP0672 Schizosaccharomyces pombe Alanine transaminase 35.54% 25.73%
HP0723 Pseudomonas sp. (strain 7A) Glutaminase 54.57% 44.51%
HP0940 Campylobacter jejuni Histidine transporter 40.41% 29.80%
HP0976 Escherichia coli Ornithine transaminase 39.17% 27.74%
HP1017 Salmonella typhimurium asparagine transport protein 43.86% 32.63%
HP1017 Escherichia coli Lysine transporter/permease 49.25% 37.10%
HP1017 Escherichia coli Phenlyalanine transporter 44.20% 30.64%
HP1017 Saccharomyces cerevisiae Tryptophan transporter 40.68% 31.94%
HP1045 Staphylococcus aureus O-Succinylbenzoate-CoA ligase 33.95% 23.66%
HP1232 Pneumocystis carinii dihydroneopterin aldolase 41.02% 28.15%
HP1282 Pseudomonas aeruginosa Isochorismate synthase 1 32.58% 21.80%

Enzymes included in the in silico H. pylori  strain without direct evidence, with locus 
numbers of ORFs with significant similarity to genes encoding these enzymes in other organisms.

Network Reconstruction as a Predictive Science

in silico Prediction:
The H. pylori Network includes a malate dehydrogenase function

L-Malate + NAD+ V Oxaloacetate + NADH +H+

Computational Verification:
BLAST search indicates the presence of a Malate:Quinone
Oxidoreductase (MQO) in C. glutamicum with significant similarity
(36.81%) and identity (25.93%) to locus HP0086 in H. pylori.

Biochemical Verification:
Kather et.al. (J Bact, June 2000) demonstrate MQO activity of locus
HP0086 in H. pylori.

One such gene product included in the H. pylori model without genomic or
biochemical evidence was malate dehydrogenase.  A subsequent study indicated
that on locus HP0086 of the H. pylori genome, an open reading frame was
located that showed significant similarity (36.81%) and identity (25.93%) with a
malate:quinone oxidoreductase in glutamic acid bacterium Corynebacterium
glutamicum (ref).  Thus, the analysis of microbial metabolic models can also
have bioinformatic applications, such as functional assignment of ORFs, in
addition to the more obvious experimental applications.
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Expanding repertoire of in silico
assignment methods

1. Phylogenetic profiles
2. Rosetta stone
3. Correlated gene neighbors

2.

1.

3.

Nature Supplement, vol 405: 823, 2000

NEW METHODS

Many new methods are now being developed to assign function to ORFs
through genome comparison.  Some of these methods are illustrated on this
slide. They are described in more detail in the reference given in the slide.
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Piecing together networks

• Make mutants and experimentally determine
phenotype

• Expression arrays and cluster analysis

• Computational approach based on co-evolution
of protein and analysis of fusion protein (Rosetta
Stone)

• Protein-protein interaction maps
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Piecing together signal transduction
networks

• Identify protein interactions and create a catalog of pair-
wise interaction maps.

• Methods for analyzing proteomic and genomic data to
yield interaction
– automated methods for analysis of sequence data obtained from yeast-2-

hybrid and 2-D gel/mass spec. methods;
– analysis of micro-array data to obtain relatedness of gene players in

pathways; and
– develop novel profiling methods for generating probe microarrays that can

elucidate signaling genes in cells

• Develop interaction and pathway maps and
representations that can relate to both experimental and
pathway model data.

SINGAL TRANSDUCTION NETWROKS

An extremely important step in the construction of signaling pathways in cells is
the cataloging of “who talks to whom” vis-à-vis proteins involved in the
pathway.  The sources of this information are; a) legacy data based on gene
knockout and mutant analysis, b) to a small extent gene expression array data,
and most importantly c) proteomics data. A large volume of these data exists for
Drosophila, C. elegans, mouse and human and one can create a “validated”
catalog of these interactions.  Further, one can anticipate increased availability
of new genomic and proteomic experimental data that can be mined to obtain
protein interaction knowledge.  Large-scale study of specific cell types and
organisms will likely yield enormous amounts of data pertaining to molecular
interaction screens, 2D gel/mass spec experiments, and cDNA expression
profiles.  Comparative sequence analysis of the proteins identified in the mouse
with Drosophila is expected to provide a valuable molecular interaction catalog.

Algorithmic methods include: a) extensive schemes to analyze genomic and
proteomic data, b) a high throughput pipeline for sequence comparisons across
species and c) validation methods to compare diverse sources of data pertaining
to specific molecular interactions.  Finally, pair-wise interaction data has to be
validated in the context of complete pathways and entirely new methods for
iterative analysis of interaction pathways can be developed.



78

Expectation: A combination
of in silico and in vitro
methods will give arise to
network construction

Nature Supplement, vol 405: 823, 2000

TOWARDS RECONSTRUCTED NEWTORKS

The reconstruction of metabolic networks is now at a developed stage.  Similar
developments are forecasted for signal transduction, and other cellular
processes.  We can expect that over the coming decade we will develop
computer and laboratory methods which will enable us to reconstruct the
networks of biochemical interactions that carry out cellular functions.

The challenge is to describe these mathematically.
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Why construct mathematical models?

in vivo

in silico

On-going updating
of signal transduction

networks

Experimental
designs

Path lengths, 
connectivity numbers,

Define modules

Whole-network analysis 
& characterization 

of solution cone

Genomics
Expression profiles Proteomics Physiological experiments

Reconstruction Connectivity Pathways FBA

Data base

in silico 
expression arrays

Figure BOP#1:  the iterative model building process

WHY MODEL?

There are many reasons for constructing mathematical models of complex
biological processes.  Perhaps chief amongst them is to reconcile data and
identify missing/incomplete knowledge.  This diagram illustrates the iterative
process that uses a variety of in vivo and in silico methods to converge on
reliable models of cellular and biological activity.
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