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Bernhard Palsson

Hougen Lecture #5

Nov 21th, 2000

Closing the Flux Cone:
imposition of maximal capacities

INTRODUCTION

In the previous lecture we looked at the combined stoichiometric and
thermodynamic constraints that cells must obey.  These led to the formation of a
conically shaped solution space--called the flux cone.  The edges are vectors
that in a positive linear combination span the cone.  These edges where shown
to be extreme pathways.  The flux through these pathways is limited by a
maximum value.

Such maximal constraints close the solution space.  In this lecture we explore
the characteristics of the closed space.
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Lecture #5: Outline

• Enzyme kinetics and maximum fluxes

• Closing the flux cone

• LP: finding optimal phenotypes

• Varying parameters
– One at a time

– Two at a time

• Designing experiments

• Expression arrays and gene deletions

LECTURE #5

This lecture begins with an introduction to the origin of the maximal fluxes that
are achievable through an enzymatic reaction and how these limitations cap off
and close the flux cone.  Although there are infinitely many possible flux
distributions found within this closed solutions space, if an objective is stated
one can find the ‘best’ solution by that criteria within this solution space.
Linear programming or optimization is used to find this solution.  The optimal
solution will always lie at the edge of the cone or on one of its surfaces.

A single solution is rarely of interest.  We thus explore the optimal solution as a
function of an environmentally varying parameter.  There are ‘kinks’ found in
the piece-wise linear solutions.  At these discontinuities we discover that the
shadow price structure of the basal solution changes.  These changes will thus
correspond to a change in the phenotype.  Thus there are a limited number (a
discrete number) of phenotypes found within the solution space.

We then explore the simultaneous variation of two environmental variables and
introduce the concept of a phase plane.  These phase planes can then be used to
design insightful experiments.

Finally, we show how flux-balance analysis can be used to interpret and predict
the consequences of gene deletions and metabolic shifts as measured by
expression arrays.
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Enzyme Catalysis

Reaction mechanism:  S + E <=> X -> P + E

Rate equation:  v = vmaxS/(Km+S) if X in a quasi steady state

flux

0

Vmax

0.5 Vmax

S=Km SConcentration

CONSTRAINTS ON METABOLIC FLUXES

Linear spaces are characterized by a basis set where any linear combination of
the basis vectors is found in the space, i.e.;

v = Σι wipi

Where pi  are the conical basis vectors, as introduced in the last lecture.  The
weights, wi, used to multiply the basis vectors in the summation are positive.

Since the individual reaction steps (vi) in a pathway vector are carried out by an
enzyme there are limitations placed on the numerical values that wi can take in a
real system:

•Minimum: the reactions are irreversible, thus the weights are positive

•Maximum: there is maximum flux through an enzymatic reaction, thus there
are maximum weights; thus

0 < wi < wmax

Since a pathway vector is comprised of a series of individual reactions, the step
with the lowest capacity will limit the flux through a linear pathway.

If a reaction is reversible we will write each direction as a separate irreversible
reaction.
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Estimation of maximal fluxes

• Using typical numerical values for:
– concentrations for enzymes (4µM) and

– metabolites (100µM), and

– theoretical maximal bimolecular association rate constants and

– data on enzyme turnover numbers, we estimate that:

Vmax to be one  million molecules per cubic micron per second

• The maximal measured fluxes are about half that value
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The Steady State Flux Space
Conservation of Mass Produces
Homogeneous Linear Equations

Systemic Properties and Reaction 
Thermodynamics produce Linear Inequalities
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• Underdetermined systems (n > m)
   create multiple solutions

• Null Space   =  space containing all  
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capabilities of the metabolic network
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THE CONSTRAINED FLUX SOLUTION SPACE

With the stoichiometric matrix constructed, how do we determine metabolic
pathways and analyze them?

As we have seen in previous lectures, the principles of conservation of mass
produce a system of homogeneous linear equations, Sv = 0.  Additionally there
are constraints placed on the direction of flow under which each flux can
operate creating a set of linear inequalities, 0 < wi < wmax.

This defines our conditions which in most cases creates an underdetermined
system.  This means that there are more fluxes operating within the system than
there are metabolites which leads to multiple solutions or flux distributions
which satisfy all of the stoichiometric constraints, and all the capacity
constraints.
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A geometric representation of the null space and
constraints imposed through inequalities: it is the

intersection of the null space and the positive orthant
in the n-dimensional space:  (Nul S)     Rn

+      Vmax∩ ∩

THE CONFINED SOLUTION SPACE AS AN INTERSECTION

Nul S  ∩  Rn
+ ∩ Vmax

In linear algebra the term null space is used to describe the space which contains
all of the solutions to a system of homogeneous linear equations.  The solution
space of interest to us is actually the intersection of this null space with the
region bounded by the inequalities placed on the weights.  This space represents
and defines the boundaries and capabilities of a metabolic genotype describing
all of the possible flux distributions and routes which can theoretically operate
through the system, clearly defining what an organism can and cannot do.

In the solution space we can find the answers to any and all of our questions
which pertain to the structure and production capabilities of an organism.
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Pramanik and  Keasling (1997):
 Growth rate dependence on the biomass composition

Varma and Palsson (1993-1995): 
Studied metabolic characteristics and capabilities of E. coli

Savinell and Palsson (1992): 
Comprehensive assessment of FBA

Majewski and Domach (1990): 
Acetate overflow during aerobic growth

Fell and Small (1986)
Used LP to study lipogenesis

History of Flux-Balance Analysis
Papoutsakis (1984) & Papoutsakis and  Meyer (1985)
Used LP to calculate maximal theoretical yields

1984

1990

1986

1992
1993

1995

1997

SOME HISTORICAL EVENTS IN THE DEVELOPMENT OF FBA

This slides shows some of the historical events in the development of FBA of
under-determined systems.  A detailed historical review is found in:

Edwards, et al Metabolic flux balance analysis in Metabolic Engineering, Lee
and Papoutsakis Editors
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Linear Programming; What is it?
finding an optimal solution in a confined space
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LP:  What is it?

This diagram depicts a bounded polytope in 3 dimensions.  Imagine that it is the
space of possible solutions to a set of linear equalities with constraints, such as
the flux balance equations and the capacity constraints.  Each point in this space
satisfies these conditions.  However, the nature of the solutions differs.  We can
choose a particular solution in this space that is the ‘best’ in some sense.

This idea underlies LP.  We state an objective function that measures what we
are interested in. Then we try to find the best value for this objective function
under the given constraints.  The best value normally means the maximum
value.  Minimization can be performed by simply finding the maximum of the
negative of the objective function.

The optimal solution normally lies in a corner of the polytope.  Occasionally the
objective function has the same value along a whole edge and all the points on
that edge are optimal values.  In this rare case the objective function is ‘parallel’
to the edge of the polytope.
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How does LP work?
A very simple example

Bonarius,et al TIBTECH vol 15:308 (1997)

The solution space is the line of
admissible in the positive orthant.

If we  maximize ATP production the
solution lies on the x-axis where all
the flux would be through reaction x1.
Conversely, maximizing NADH
production would give the point at
the y-axis, where only reaction x2 is
active.

Note that the optimal solutions lie at
the boundary of the admissible space.

x1+x2= rA

This readily understandable example shows a space of admissible solutions and
the optimal phenotypes lying at the edges of this space.

Q:  What happens if you optimize x1+x2 ?
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Types of objective functions

• For basic exploration and probing of
solution space

• To represent likely physiological
objectives

• To represent bioengineering design
objectives

The Objective Function

Within the solution space defined by the connectivity and capacity constraints,
we can search for the best solution using linear optimization.  What we search
for is determined by the objective function stated.  There are several types of
objective functions that can be used.  First, we can use objective functions to
explore the properties of the solution space, and the capabilities of an organism.
These objective functions include things like maximizing the ATP from a given
substrate, or maximizing the amount of an amino acid produced from a given
substrate.  These types of objective functions are non-physiological, but can be
used to probe the properties of a network.  A second class of objective functions
would represent objectives that we believe are physiologically relevant.  For
microbial cells, the belief is that they maximize their growth rate given the
constraints under which they operate.  In this case, and as shown, below the
objective is the balanced exit from the network of all the precursors needed for
the synthesis of the cellular mass.  The third type of objective function may
relate to an intentional engineering objective of a metabolic system.  We may
wish to maximize a product like Lysine, for instance, and try to figure out what
the best flux maps are that lead to the production of Lysine.  We can add or
delete reactions from the network to determine how those changes affect the
yield of the desired product.
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Questions that can be addressed using
LP: calculating optimal phenotypes

Minimize:ATP production
nutrient uptake
redox production

 metabolite production
Maximize:biomass production (i.e. growth)

the Euclidean norm of the flux vector

Are there multiple optima for an organism and does it use
kinetic regulation to move from one edge to the next?

OPTIMAL PHENOTYPES

A number of different objective functions have been used for metabolic
analysis, these include

Minimize ATP production: This objective is stated to determine conditions of
optimal metabolic energy efficiency.

Minimize nutrient uptake: This objective function is used to determine the
conditions under which the cell will perform its metabolic functions while
consuming the minimum amount of available nutrients.

Minimize redox production: This objective function finds conditions where the
cells operate to generate the minimum amount of redox potential.

Minimize the Euclidean norm: This objective has been applied to satisfy the
strategy of a cell to minimize the sum of the flux values, or to channel the
metabolites as efficiently as possible through the metabolic pathways.

Maximize metabolite production: This objective function has been used to
determine the biochemical production capabilities of Escherichia coli.  In this
analysis the objective function was defined to maximize the production of a
chosen metabolite (i.e. lysine or phenylalanine).

Maximize biomass and metabolite production: By weighing these two
conflicting objectives appropriately, one can explore the tradeoff between cell
growth and forced metabolite production in a producing strain.
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Calculating Optimal Phenotypes using LP:
the objective function Z

Minimize ,  whereZ

Z c vi i
i

= = ⋅∑ c v

c is the vector that defines the weights for of
each flux in the  objective function, Z.  The
elements of c can be used to define a variety
of metabolic objectives.

THE OBJECTIVE FUNCTION

Numerous questions about metabolic capabilities can be answered using LP.
The stoichiometric and capacity constraints define a range of allowable
behavior.  We can then find the best value within these constraints.
Biologically, we have defined the space of all phenotypes (that is particular
solutions) that can be derived from a genotype.  We can calculate the best
phenotype from a particular standpoint.  For instance we can calculate the
maximum number of ATP molecules that can be generated from a particular
substrate.

The next slide lists a number of important phenotypic behaviors that can be
calculated using LP.  The maximum growth function is perhaps the one of
greatest interests from an evolutionary standpoint.

This general representation of Z enables the formulation of a number of diverse
objectives.  These objectives can be design objectives for a strain, exploitation
of the metabolic capabilities of a genotype, or physiologically meaningful
objective functions, such as maximum cellular growth.
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Mathematical formulation of objective
functions

Minimize  Z c vi i
i

=< ⋅ >= ∑c v

 v =
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Example:  Minimize ATP production
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MATHEMATICAL FORMULATION OF OBJECTIVE FUNCTIONS

This slide illustrates the formation of the objective function using a simple
example.  In the example there are 4 metabolite fluxes.  The objective is to
minimize ATP production therefore the c matrix has a zero “weight” on all
fluxes except vATP which has a -1  The coefficient on the ATP flux is negative
since it is being minimized.



183

The growth
requirements

Metabolic demands of precursors and
cofactors required for 1 g of biomass of
E. coli.

These precursors are removed from the
metabolic network in the corresponding
ratios.

Thus, the objective function is:

Z =  41.2570 vATP - 3.547vNADH +
18.225vNADPH +  ….

Metabolite Demand 
(mmol)

ATP 41.2570
NADH -3.5470
NADPH 18.2250
G6P 0.2050
F6P 0.0709
R5P 0.8977
E4P 0.3610
T3P 0.1290
3PG 1.4960
PEP 0.5191
PYR 2.8328
AcCoA 3.7478
OAA 1.7867
AKG 1.0789

THE GROWTH FUNCTION

This table shows the requirements for making one gram of E. coli.  This means
that for the cell to grow all these components must be provided in these
amounts.  Thus, a balanced set of metabolic demands makes up the growth
objective function:

Z = 41.257vATP - 3.547vNADH + 18.225vNADPH + 0.205vG6P + 0.0709vF6P +

       0.8977vR5P + 0.361vE4P + 0.129vT3P + 1.496v3PG + 0.5191vPEP +

       2.8328vPYR + 3.7478vAcCoA + 1.7867vOAA + 1.0789vAKG

The biomass composition thus serves to define the weight vector c.

The full growth function for E. coli is more complicated than the one given
above, since various maintenance functions need to be considered.
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Optimizing cellular growth  (=max likelihood of survival?)

Nucleosides

Heme

Pyrimidines

Lipids

Purines

Cell Wall

Amino Acids

Biology

Z c vi i
i

= = ⋅∑ c v

S v 0⋅ =

α βj j jv≤ ≤

Mathematics

Maximize

Subject to

THE MAXIMAZATION OF BIOMASS FORMATION

This slide shows schematically on the left the idea of maximizing biomass
formation.  There can be one or more inputs (the green arrows) and a balanced
(linked) output that corresponds to the biomass composition.

On the right we show the mathematical formulation of the problem.  We wish to
maximize the objective function under the stated constraints.  These constraints
form a closed cone as explained earlier.
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Biomass composition: some issues

• Will vary from one organism to the next

• Will vary from one growth condition to another

• The optimum does not change much with changes in composition
of a class of macromolecules, i.e. amino acid composition of
protein

• The optimum does change if the relative composition of the major
macromolecules changes, i.e. more protein relative to nucleic
acids

Biomass Composition

The physiologically interesting objective that we wish to study throughout these
notes is the maximization of biomass yield.  The definition of the solution space
has few ambiguities associated with it, but the statement of the objectives has a
few uncertainties built into it.  First, the biomass composition is variable.  It is
different from one organism to another.  It varies from one growth condition to
another, and both of those may potentially be important issues and change the
predicted optimum behavior.  Legacy databases of biomass composition are
needed.

The limited calculations that have been performed show that the optimum
solutions do not change significantly with the monomeric composition of the
major macromolecules.  For instance, if the Valine to Alanine ratio is varied in
the protein of a cell, the optimal growth rate does not significantly change.
Conversely, if the protein relative to lipid composition in a cell changes, the
optimum solution tends to be affected.

As will be shown, one can invert this problem and look at an edge of the
solution space and then calculate all the objective functions that are maximized
under those conditions.  This might give better insight into the objectives that
cells are trying to accomplish.
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The solution
displayed as
a flux map:
example,
aerobic
growth on
glucose
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Varying parameters:

Repeated sequential optimizations for
multiple values of a single parameter

PARAMETER VARIATION

We looked at one optimal flux map for different substrates and for constraints
on several internal fluxes.  These are calculations for a discrete set of
conditions. We may however be interested in the a range of numerical values for
a particular parameter.  Thus, we can calculate a series of optimal solutions for
small incremental changes in a parameter in the system.  If the increments are
small enough, we effectively get a continuous variation in the parameter of
interest.
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EXAMPLE: REDUCING OXYGEN AVAILABILITY

When cells grow in the laboratory with an abundance of substrate they grow
into high densities eventually outstripping the ability for oxygen to be supplied
rapidly enough to support fully aerobic growth.  As oxygen becomes limiting,
the cells must partially oxidize their substrate and secrete a metabolic by-
product.

The panel on the left illustrates this problem at the cellular level.  On the right
this problem is illustrated from a bioprocess viewpoint.

The following slides were prepared with a reduced E. coli model in 1993
(Varma, A&EM), but it illustrates how parameter variations can be used to
study problems of fundamental physiological relevance, and those that are of
practical importance.
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Example:

In this example we vary the
maximum allowable uptake
rate of oxygen. The whole
range of oxygenation is
shown, from fully aerobic
conditions to fully
anaerobic conditions.

The growth rate is graphed
in the upper panel and the
by-product secretion rates
in the lower.

anaerobic aerobic

VARYING OXYGEN AVAILABILITY

As the dissolution of oxygen cannot keep up with the high volumetric
consumption rates at high cell density, the amount available per cell is reduced.
Computationally this is represented by lowering the capacity constraints on the
oxygen uptake rate.

The results from a series of LP calculations with varying bO2 is shown in this
slide.  The optimal growth rate drops as the oxygen uptake rate is reduced, as
shown in the upper panel.  It does so in piece-wise linear fashion where changes
in the slope occur at well defined oxygen uptake rates.  This feature naturally
divided the range of oxygen uptake rates into distinct phases.

The lower panels shows the secretion rates of metabolic by-products; formate,
ethanol and acetate. Each one of these by-products is secreted in a
fundamentally different way in each phase.  As oxygen is reduced, incomplete
oxidation of glucose takes place and metabolic by-products are secreted; acetate
is first secreted, then formate followed by ethanol.

The LP solution in each phase is fundamentally different and the transition from
one to another can be interpreted using shadow prices.
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Shadow price 
= slope

oxygen

I II

Shadow prices can be used to
interpret the changes in the
optimal flux distribution

CHANGES IN SHADOW PRICES AT PHASE BOUNDARIES

The shadow price changes discontinuously at the boundary from one phase to
the next.  In fact the change in the shadow price defines the boundary between
the phases.  The shadow prices basically tell us how the governing constraints
on the objective function change and how the base optimal LP solution changes.
This change is reflected in a shift in the flux map.

Phase I shown above is for completely anaerobic growth.  The shadow price for
oxygen and ATP is positive, indicating that these are constraining factors, since
the objective function would increase if more of these compounds were
provided to the cell. Some of the redox carriers have negative shadow prices
indicating that the cell has a problem with excess redox potential.  The latter is
characteristic of anaerobic metabolism.

In Phase I, acetate, ethanol, and formate, all have zero shadow prices, indicating
that these intermediates are useless to the cell.  Thus they are secreted.  Notice
that in Phase II, ethanol has a positive shadow price.  It thus has value to the cell
and is not secreted.  In fact the defining difference between the optimal flux
maps in phase I and II is the secretion of ethanol.  The shadow prices are thus
key in interpreting the optimal flux maps and changes in the maps as parameters
vary.
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Phenotype Phase Plane

• 2-dimensional region
– Spanned by 2 metabolic fluxes

• Typically uptake rates

– lines to demarcate phase of
constant shadow price

– By definition, metabolic pathway
utilization is different in each
region of the phase plane
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VARYING TWO PARAMETERS: THE PHENOTYPIC PHASE PLANE

A phase plane is a two dimensional region that is spanned by 2 metabolic
fluxes.  These fluxes are often uptake rates, but this isn’t required.  The shadow
prices for the metabolites are calculated for all the points within this space, and
lines are drawn to demarcate regions of constant shadow prices.

The shadow prices are constant within each region and are different in the other
regions.

Each region refers to a different basis solution, which implies a different
utilization of the metabolic pathways.

Thus, the utilization of the metabolic pathways will be qualitatively different
depending on the region of operation within the phase plane.
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Example network:

EXAMPLE

To illustrate these concepts, we now present an example of a hypothetical
metabolic system.  This network utilizes a single carbon source, which it
metabolizes to a single biosynthetic precursor, C.  This precursor is converted
into biomass, via Rz (the objective function), and to two different metabolic by-
products, D and E.  An electron acceptor, oxygen, is also included in this
example.  This electron acceptor can be used to convert redox potential into
high-energy phosphate bonds, Rres.  Additionally, there is a reaction, R3, which
consumers 0.2 C to generate NADH.  Finally, one reaction, Rft, represents futile
cycles that hydrolyzes ATP.
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The methods presented in the previous slides were used to calculate the PhPP
for this hypothetical metabolic system.  The PhPP and the qualitative flux maps
for each phase are shown the next slide.  P1 is the futile region where the
electron acceptor is provided in excess.  The metabolic network dissipates the
excess electron acceptor taken up by the cell by increasing the flux in R3, which
generates NADH but also oxidizes the precursor, C.  Additionally, the futile
cycle reaction Rft is utilized to eliminate the excess ATP produced.  The upper
limit of P1 occurs when the entire biosynthetic precursor produced is oxidized
to eliminate the excess electron acceptor, and thus no biomass can be generated.
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Phase Plane and optimal flux map for simple network
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The metabolic flux map of this system is also shown for conditions on the line
of optimality (LO).  The LO is a special case of P1, this is the point where the
electron acceptor is no longer in excess and the futile cycle flux is zero (Table
1).  The LO represents the optimal utilization of this example metabolic network
to produce biomass.  The qualitative flux map indicates that under conditions
defined by the LO there is no metabolic by-product production and futile cycle
flux equals zero.

The next distinct flux map for this hypothetical metabolic network is found in
region P2.  In P2 a reduced metabolic by-product (D) is secreted from the cell.
The shadow price for the metabolite D in this system is zero in region P2, and
the utilization of the metabolic pathways in this region is fundamentally
different than in P1, Plo, P3, and P4.  The metabolic pathway for the production
and secretion (R4) of D is turned on under the conditions defined in this region,
and the excess redox potential is eliminated through the secretion of D.

The utilization of the metabolic network in P3 is fundamentally different than in
P2.  In P3, the cyclic reaction R3 is not utilized, and thus redox potential
production is reduced.  Both of the reduced metabolic by-products are secreted
(D and E) as sinks for redox potential.  Thus, in this region, both of these
metabolites will have a shadow price equal to zero.
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Shadow prices for simple network

Table 1: Shadow price of the metabolites from the example shown in Figure 1.
Carbon A B C D E O2 NADH ATP

P1 -1.30 -1.30 -1.30 -1.00 -0.33 -0.40 0.10 -0.10 0.00
Plo -0.90 -0.90 -0.93 -0.67 -0.21 -0.27 0.00 -0.07 -0.03
P2 -0.21 -0.21 -0.30 -0.09 0.00 -0.04 -0.17 -0.01 -0.09
P3 -0.05 -0.05 -0.14 -0.09 0.00 0.00 -0.23 0.05 -0.09
P4 0.50 0.50 0.50 -1.00 -0.33 0.00 -0.50 0.50 0.00

Finally, in P4, the futile cycle reaction is utilized, and all the metabolic by-
product formation is directed toward the formation of the more reduced by-
product, E.  When the oxygen uptake and the carbon uptake define a point on
the lower boundary of P4, all the carbon source is directed toward the formation
of metabolite E, and no biomass is generated.  Thus, below this line (the
crosshatched region) is another region of unobtainable steady states of the
metabolic network.

This simple example illustrates the utility of the PhPP in the interpretation of the
metabolic physiology of the system.  It clearly shows that the optimal
phenotypes are condition dependent, and that a finite number of qualitatively
different optimal phenotypes can be derived from a single genotype.

End of example
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The H. influenzae Metabolic Phase Plane

An example of a phase plane for a genome scale metabolic map.

From J.S. Edwards and B.O. Palsson (1999), "Systems Properties of the
Haemophilus influenzae Rd Metabolic Genotype," The Journal of Biological
Chemistry, 274: 17410-17416.
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Addressing scientific hypotheses:
CAD of experiments

Perhaps the most useful application of in silico strains is to design meaningful
experiments.  Agreement confirms the model, while failure indicates that the
model is missing features.  Therefore we like failure, so that the model can be
continually improved.
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Acetate-Oxygen Phenotype Phase Plane
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INTERPRETING THE PHASE PLANE:

Using isoclines

This slide describes the acetate-oxygen phenotype phase plane for E. coli.

It can be seen that there are 2 distinct regions.  We have also drawn the isoclines
on this figure, and it can be seen that the isoclines have a positive slope in both
regions. This means that they are unstable -- it is advantageous for the organism
to move the the edge of the region

The optimal growth occurs at the line separation the two phases, the so-called
line of optimality.

The thinner lines in each feasible phase plane are called isoclines.  They denote
a constant growth rate.
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Acetate Phase Plane:Experimental Data

THE EXPERIMENTAL DATA:

Right on the line!
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Acetate 3-D Phase Plane:
uptake and growth rates

The 2D phase plane 

Experimental data

3D REPRESENTATION:

Including growth rate as a dependent variable

This slide shows how the maximal growth rates can be graphed above the
phenotypic phase plane.  We see the outline of a cone. For a given maximal
uptake rate of either acetate or oxygen, the best (highest growth rate) solution is
on the edge of the cone.

The experimental data falls there, indicating that the E. coli strain has optimized
its growth rate on acetate.
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Succinate 3-D Phenotype Phase Plane

LO

Dual substrate
limited region

This also works for other substrates!

The case of succinate

This figure, shows the succinate-oxygen PhPP in three dimensions.

•The formalism is similar to the 3-D acetate PhPP

•Here the effect of the carbon source on the structure of the PhPP can be seen.

•The LO is shown here, and the data points with reduced succinate uptake rates
all lie on (or near) the LO,

•However, when the succinate uptake rate was increased, the experimental data
followed the LO until the oxygen mass transfer constraint was reached.  At this
point, the growth rate and the succinate uptake were increased by moving into
region 2 of the phase plane (white data points).
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Succinate Phenotype Phase Plane
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Succinate in 2D

All the experimental data points were plotted onto the succinate-oxygen PhPP.
And the results are shown on this slide.

Consistent with the maximal growth hypothesis, all the data points were
constrained to region 2 of the PhPP.

•Within region 2, all the points were restricted to two different regions.

•either they were on the LO, or

•they were at a maximal oxygen uptake rate with the succinate uptake
rate defining points within region 2.

•The insert shows the calculated and measured acetate secretion rate in within
region 2
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m=D\max [m]\min [qglc]•

Feed

Continuous Culture

Waste

Byproduct Yield on Glucose for an Anaerobic,
Glucose-Limited Culture of S. cerevisiae

Experimental data are taken from Nissen et. al. 1997

Growth and Ethanol Secretion rates of an
Anaerobically Grown S. cerevisiae
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CONTINUOUS CULTURE OF YEAST

In continuous culture the dilution rate specifies the growth rate. In the previous
slides we maximized the growth rate (output) for a given uptake rate (input).
Here in contrast, we fix the growth rate (output) and thus minimized the input
(the uptake rate).  The in silico solution and the measured uptake rates are
shown and they agree reasonably well.  Yeast seems to operate close to the edge
of its allowable solution cone.
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Effects of gene deletions

This formalism can be used to examine changes in the genotype.  Genes can be
added or deleted and the consequences on the ability to grow, or to generate
other phenotypes, can be calculated and compared to the wild type in silico
strain.
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E. coli in silico vs. in vivo
Gene Glucose Glycerol Succinate Acetate Gene Glucose Glycerol Succinate Acetate
aceEF -/+ pgl +/+
aceA -/- pntAB +/+ +/+ +/+ +/+
aceB -/- glk +/+
ackA +/+ ppc +/+ -/+ +/+ +/+
acs +/+ pta +/+
acn -/- -/- -/- -/- pts +/+
cyd +/+ pyk +/+
cyo +/+ rpi -/- -/- -/- -/-
eno -/+ -/+ -/- -/- sdhABCD +/+
fba  -/+ tpi  -/+ -/- -/- -/-
fbp +/+ -/- -/- -/- unc +/+ +/+ -/-
gap -/- -/- -/- -/- zwf +/+
gltA -/- -/- -/- -/- sucAD +/+
gnd +/+ zwf, pnt +/+
idh -/- -/- -/- -/- pck, mez -/- -/-
ndh +/+ +/+ pck, pps -/- -/-
nuo +/+ +/+ pgi, zwf -/-
pfk -/+ pgi, gnd -/-
pgi +/+ +/+ pta,acs -/-
pgk -/- -/- -/- -/- tktA, tktB -/-

Experimental/in silico

DELETION STUDY

•An important question arises as to how well these in silico predictions represent
the actual metabolic behavior.

•The plus/minus nomenclature represents the ability of the respective mutant
cell to grow.  The first being the experimental determination, and the second
being the in silico prediction.

•We have compared our in silico results to the growth of mutants in about 80
different conditions reported in the literature, and the results are summarized on
this slide.  The in silico strain correctly predicted the ability to grow in all but 7
cases.

•The inaccuracies are highlighted here by the red boxes.
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E. coli in silico vs. in vivo
Gene Glucose Glycerol Succinate Acetate Gene Glucose Glycerol Succinate Acetate
aceEF -/+ pgl +/+
aceA -/- pntAB +/+ +/+ +/+ +/+
aceB -/- glk +/+
ackA +/+ ppc +/+ -/+ +/+ +/+
acs +/+ pta +/+
acn -/- -/- -/- -/- pts +/+
cyd +/+ pyk +/+
cyo +/+ rpi -/- -/- -/- -/-
eno -/+ -/+ -/- -/- sdhABCD +/+
fba  -/+ tpi  -/+ -/- -/- -/-
fbp +/+ -/- -/- -/- unc +/+ +/+ -/-
gap -/- -/- -/- -/- zwf +/+
gltA -/- -/- -/- -/- sucAD +/+
gnd +/+ zwf, pnt +/+
idh -/- -/- -/- -/- pck, mez -/- -/-
ndh +/+ +/+ pck, pps -/- -/-
nuo +/+ +/+ pgi, zwf -/-
pfk -/+ pgi, gnd -/-
pgi +/+ +/+ pta,acs -/-
pgk -/- -/- -/- -/- tktA, tktB -/-

• There are 7 inaccuracies
– 2 are due to toxic intermediate production

• tpiA, fba

– 5 are due to metabolic regulation
• aceEF, eno, pfk, ppc

• Revertants can arise with altered regulation
– ppc, atp

• Conservative predictions

EMBRACING AND ANALYZING FAILURE

•There are 7 inaccuracies, and they are explained by 2 basic reasons.

•1. toxic intermediate production

•2. metabolic regulation

•For example, when these gene products are removed, it is thought that the cell
produces a toxic intermediate, and this prevents the cell from growing.  This can
not be predicted using the methodology that I have introduced.

•Also, when the enolase gene is removed from the system, the experimental data
suggests that this cell is unable to grow, whereas the in silico cell is able to
grow, and upon further examination, it is seen that the in silico cell is able to
grow by synthesizing and degrading an amino acid, something that the cell is
unlikely to do.

•However, it has been observed that revertants can spontaneously arise with
altered expression.

•For example, ATPase mutants have been shown not to grow on succinate,
however, this metabolic model predicts that they theoretically can.  It was
recently reported a couple of months ago that the ATPase deletion strains were
unable to grow due to a transport deficiency, and revertants arose after about a
week that do grow on succinate, at yields near the theoretical maximum.
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Predicting expression arrays

Metabolic maps show the phenotype.  Expression arrays also show the
phenotypes.  One is a flux phenotype whereas the other is the expression
phenotype.  The two cannot be directly and quantitatively compared.

However, the two can be qualitatively compared for a transition from one state
to another.  Pathways need to be up and down regulated.  The patterns of the
two can be compared qualitatively, i.e. in an off/on sense,
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E. coli in silico vs. in vivo
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METABOLIC SHIFTS

This slide demonstrates an aerobic batch culture in glucose minimal media.  The
lines are the FBA predictions from a quasi-steady state simulation in a batch
culture, and the points are experimentally determined.

This line represents the glucose concentration in the media, and it can be seen,
as the glucose is utilized, the cells grow, and produce acetate.  At this point, the
glucose is completely utilized from the media,  and the simulation predicts the
reutilization of the acetate, and this is also experimentally observed.

However, it is at this point that the in silico predictions deviate from the
experimental data. Due to the steady state assumption, the in silico strain is able
to immediately reutilize the acetate.  However, the experimental data lags
behind by about 40 minutes.

This lag is due to the time required to to adjust the metabolic network for
acetate utilization.
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pstG, crr Repression
pdh Repression
pfk Repression
pgl Repression
zwf Repression
gnd Repression
ppc Repression
pyk Repression
fdnGHI Repression
tal 27.38
pgi 22.33
fba 14.61
tktA 13.71
rpe 13.71
gap 13.34
pgk 13.34
tpi 12.87
rpi 11.33
eno 8.29
gpm 8.29

Gene Change
aceAB Induction
glcB Induction
pck Induction
pntAB Induction
maeB Induction
fbp Induction
putT Induction
sucCD 16.16
sdhABCD 12.34
trxB 12.31
mdh 7.71
sucAB, lpd 7.62
fumAB 5.98
acn 5.81
gltA 5.81
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Diauxic Shifts:
Predicting Metabolic Flux Changes

THE DIAUXIC SHIFT

This figure reproduces the data from an earlier slide, where batch growth on
glucose was observed with the secretion of acetate.  Then the acetate was re-
consumed.  The flux maps for growth on acetate and glucose are quite different.
The relative flux levels through all the steps can be compared.  Based on such
comparisons relative fluxes through the different metabolic steps can be
estimated.

If the expression levels are proportional to the needed flux levels then the
indicated (predicted) up- and down-regulation of genes should be observed.

This  result is a testable experimental hypothesis.



210

0

5

10

15

20

0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

Acetate

Biomass
Yield

Ethanol

Formate

Biom
ass yield (g D

W
 g

-1)

IVIIII II V

Pr
od

uc
tio

n 
ra

te
 (

m
m

ol
hr- 1

g- 1
 

D
W

)

VI
Status Gene Aerobic (V) Anaerobic(II)

adhE 0.00 5.24

pflAC 0.00 16.08

pntAB 0.00 5.92

ackAB -0.52 9.86

pta -0.52 9.11

pykAF 0.56 7.02

pgi 4.53 9.94

tpiA -7.14 -9.57

fba 7.25 9.61

pfkAB 7.25 9.61

eno 14.04 18.39

gpmAB 14.04 18.39

pgk 15.66 18.99

gapAC 15.66 18.99

ppc 2.66 1.05

rpiAB 2.47 0.27

nuo 35.92 3.89

rpe 2.80 -0.29

tktAB 2.80 -0.29

atp -54.16 -5.53

cyoABCD 40.57 4.00

aceEF 5.33 0.40

acnAB 5.33 0.40

gltA 5.33 0.40

icdA 5.33 0.40

fumABC 5.27 0.38

mdh 5.27 0.38

talB 1.58 -0.08

sucCD 3.85 -0.18

gnd 5.31 0.00

pgl 5.31 0.00

zwf 5.31 0.00

aceEF 8.18 0.00

sdhABCD 4.31 0.00

sucAB 4.31 0.00

aceA 0.00 0.00

aceB 0.00 0.00

ldh 0.00 0.00

acs 0.00 0.00

cydABCD 0.00 0.00

fbp 0.00 0.00

frdABCD 0.00 0.00

glk 0.00 0.00

ndh 0.00 0.00

pckA 0.00 0.00

ppsA 0.00 0.00

sfcA 0.00 0.00

Not used

Increased

Inactivated

Decreased

Activated

Oxygen uptake rate (mmol hr-1 g-1 DW)

Figure 16. Six phases of metabolic behavior associated with varying 
oxygen availability, going from completely aerobic to completely
anaerobic in E. coli. The glucose uptake flux was fixed under all 
conditions, and the resulting optimal biomass yield is indicated along with 
the output fluxes associated with three metabolic byproducts: ac etate,
formate, and ethanol. The arrow indicates the shift from aerobic to 
anaerobic conditions, which provided the data for the table (right). This 
figure is available in color at http://gcrg.ucsd.edu/NIH/Figures.pdf.
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Figure 16. Six phases of metabolic behavior associated with varying 
oxygen availability, going from completely aerobic to completely
anaerobic in E. coli. The glucose uptake flux was fixed under all 
conditions, and the resulting optimal biomass yield is indicated along with 
the output fluxes associated with three metabolic byproducts: ac etate,
formate, and ethanol. The arrow indicates the shift from aerobic to 
anaerobic conditions, which provided the data for the table (right). This 
figure is available in color at http://gcrg.ucsd.edu/NIH/Figures.pdf.

The relative in silico calculated fluxes can be compared to the relative
expression levels under the two conditions considered.  Only qualitative
comparisons can be made since the flux is not proportional to the expression
levels.
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Gene expression on a genomic scale

DeRisi et.al.,
Science, 278:680-686, 1997

• Analyzing the gene expression patterns
during growth in different conditions

– oxygenation, carbon sources

• Comparing the gene expression patterns
to the FBA predictions - wild-type &
knockout strains

• Goal is to relate gene expression patterns
to metabolic pathway utilization

DIAUXIC SHIFT IN YEAST FOR GROWTH ON GLUCOSE

It has been shown by Patrick Brown’s group at Stanford, that the shift in
metabolic pathway utilization can be determined from genomic scale
measurements of gene expression.

They have generated cDNA micro-arrays with probes for virtually every gene in
the yeast genome, and used these micro-arrays to study the changes in gene
expression on a genome scale during a diauxic shift from glucose to ethanol
utilization.

Shifts in expression levels that correspond to pathway usage were observed.
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Summary

• Maximum capacity constraints close the flux cone

• LP can be used to find optimal solutions in the so formed closed
solution space

• There are many types of objectives that can be studied; perhaps the
maximal growth rate is the most appropriate

• Methods can be developed to show all optimal solutions as a
function of environmental parameters

• The phase plane analysis shows that there is a finite number of
optimal phenotypes

• This analysis can be used to interpret and predict the consequences
of losing genes and the expression changes during shifts from one
growth condition to another
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