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Bernhard Palsson

Hougen Lecture #6

Nov 21th, 2000

The biological design variables:
kinetic and regulatory constraints

INTRODUCTION

We have up to this point imposed the constraints that arise from basic physico-
chemical considerations.  Now we look at biological, “self-imposed”
constraints.
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Lecture #6: Outline

• Brief recap of Lecture #5

• E. coli as an optimizer

• Engineering vs. biological design procedures

• Accounting for regulation of gene expression:
– Logistical and flux balance representation

– Examples: multiple substrates

• Dealing with kinetics
– Numerical values of kinetic constants

– Relative values

– Temporal decomposition

• Numerics

LECTURE #6
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Succinate 3-D Phenotype Phase Plane

LO

Dual substrate
limited region

This also works for other substrates!

The case of succinate

This figure shows the succinate-oxygen PhPP in three dimensions.

•The formalism is similar to the 3-D acetate PhPP

•Here the effect of the carbon source on the structure of the PhPP can be seen.

•The LO is shown here, and the data points with reduced succinate uptake rates
all lie on (or near) the LO,

•However, when the succinate uptake rate was increased, the experimental data
followed the LO until the oxygen mass transfer constraint was reached.  At this
point, the growth rate and the succinate uptake were increased by moving into
region 2 of the phase plane.

•How do cells find this optima?
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Engineering Design

• Objective
– separation of protein, building a bridge, designing a car, etc

• Constraints:
– geometry, materials, diffusion constants, cost, time

• Design envelope

• Optimize design using free design variables
– optimal engineering designs do evolve

Engineering design begins with a statement of an objective; i.e. separating a
protein or building a bridge.  The constraints on the design are then defined.
Cost and time are always important, but so are material properties (strength,
elasticity, etc), physical constants (diffusivities, thermal conductivities), and
geometric considerations.  These constraints then define a design envelope
within which the design must fall.  Optimization of the design is then carried out
within the allowable ranges to produce the 'best' design.
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Constraints on biological networks

• Stoichiometry

• Maximum Capacities

• P/C constraints
– Diffusion,

electroneutrality

• Kinetics/Regulation

• Non-adjustable
– Horizontal gene transfer

• Upper limit
– Downwardly adjustable by

gene expression

• Non-adjustable

• Highly adjustable
– Evolutionary design
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Engineering vs. Biological Design

• Objective
– Separation of protein

• Constraints:
– Geometry

– Materials

– Diffusion constants

• Design envelope

• Optimize design using
free design variables

• Objective
– Survival, growth

• Constraints:
– Max fluxes

– Connectivity

– P/C factors

• Solution space

• Optimize design using
kinetic and regulatory
variables

There is some uncertainty about how to apply the basic physical laws in the
intra-cellular milieu and even if we knew how, we would not have numerical
values for the myriad of constants that appear in such equations.  The alternative
approach relies on the successive imposition of constraints that govern
biochemical reaction networks.  Such constraints include the maximum flux
achievable through a reaction, the connectivity of the network and so forth.  The
imposition of these constraints defines a solution space, similar to the design
envelope discussed above. The 'best' solution in the allowable solution space is
then determined based on an optimization procedure.  The optimization is based
on an assumed objective that the cell is striving to meet.  A match has been
obtained between measured growth and metabolic by-product secretion of E.
coli K-12 for growth on acetate and succinate and the calculated optimal
performance based on the constraint-based approach.
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Biological Design

Regulation of expression:

shaping solution spaces

Regulation of activity:

location within a solution space

Given the solution space that is determined in part by hard physicochemical
constraints, the exact solution is determined by the kinetic and regulatory
parameters that the cell can alter.  Thus, we can now view the kinetic and
regulatory parameters as 'biological design' variables, based on an analogy with
the engineering design procedure.  In order for this analogy to hold and to view
the kinetics as biological design variables, we must be able to observe the
evolutionary motion of a suboptimal design towards an optimal under the given
constraints.



222

Demo Network
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Logistical -FBA Models

Known regulatory effects can be used to close off or open links in the network.
The known operon structure for E. coli can be used to implement a condition-
dependent map available to the cell.
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Regulatory Network for
 E. coli Core Metabolism

Network Size

  142 Metabolic Genes
  89 Metabolic Reactions
12 Regulatory Proteins
  86 Regulated Genes
  42 Regulated Reactions

Capabilities

Substrate Regulation (e.g. glucose)
Catabolite Repression
Aerobic/Anaerobic Regulation
Metabolite Regulation (F6P, Pyr)

SPECS

These are the specifications on the regulated core E. coli metabolic model.
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1 2 3
PPSA 2 2 2
RPIBR 2 2 2
ACNAR 2 2 2
ACS 2 2 2
ACEA 2 2 2
ACEB 2 2 2
GLPK 2 2 2
RBSK 2 2 2
GLPD 2 2 2
GLPA 2 2 2
GLUPR 2 2 2
RIBUP 2 2 2
PIUP1R 2 2 2
GLK 1 1 1
FBP 1 1 1
GPMBR 1 1 1
TALAR 1 1 1
TKTB1R 1 1 1
FUMCR 1 1 1
DLD2 1 1 1
PFLC 1 1 1
PCKA 1 1 1
MAEB 1 1 1
SFCA 1 1 1
PPA 1 1 1
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PNT1A 1 1 1
GLCUP 1 1 1
LACUP 1 1 1
DCTAR 1 1 1
DCUBR 1 1 1
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Pyruvate produced non-
optimally during regulatory

shift in phase 2

Dynamic simulations of the regulated E. coli model.  The bar to the left shows
changes in gene expression, while the expression of the genes described in the
bar on the right does not change.
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Kinetics: locating the solution 
in the ‘lock-box’

Regulation of gene expression and maximal flux constraints close-off a solution
space.  The exact location of the solution in the ‘lock-box’ will be determined
by the numerical values of the kinetic constraints.
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Numerical values of kinetic constants

• Compilations of legacy
data
– i.e. EMP data base

• Determine how well we
need to know the
kinetic parameters
– Order-of-magnitude

Log of Km Values for CoEnzymes

0

0.05

0.1

0.15

0.2

0.25

0.3

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

All Enzymes (5667) Bacteria (1710) Eukaryotes (3377) Archae (227)

Estimated
average
metabolite
concentration
is 100µM



227

Enzymes

Log of Enzyme Concentrations (mM)
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Figure 9. (A) The simplified red blood cell reation network comprised of only
glycolysis and Rapoport-Leubering shunt. (B) The three extreme pathways for this 
network; glycolysis, charging, discharging. 

(b)

(a)

Figure 9. (A) The simplified red blood cell reation network comprised of only
glycolysis and Rapoport-Leubering shunt. (B) The three extreme pathways for this 
network; glycolysis, charging, discharging. 

(b)

(a)

Figure 21: The steps in finding possible rate laws that can explain observed behavior: (1) 
estimate the maximum flux rate or capacity of a given pathway by examining experimental 
data; (2) identify the modes of operation  (e.g. we observe from the data points in the figure 
that the rate of the pathway  is either approximately zero or is occurring at its maximum 
rate); and (3) find the possible regulatory schemes consistent w ith the modes of operation,   
and for each of these do a least squares fit to find the relative values of the binding 
constants and a better estimate of the capacity constraints.  Th e figure shows how one of 
these curves might fit the experimental data.  This figure is available in color at
http://gcrg.ucsd.edu/NIH/Figures.pdf.

Figure 21: The steps in finding possible rate laws that can explain observed behavior: (1) 
estimate the maximum flux rate or capacity of a given pathway by examining experimental 
data; (2) identify the modes of operation  (e.g. we observe from the data points in the figure 
that the rate of the pathway  is either approximately zero or is occurring at its maximum 
rate); and (3) find the possible regulatory schemes consistent w ith the modes of operation,   
and for each of these do a least squares fit to find the relative values of the binding 
constants and a better estimate of the capacity constraints.  Th e figure shows how one of 
these curves might fit the experimental data.  This figure is available in color at
http://gcrg.ucsd.edu/NIH/Figures.pdf.

Orders of Magnitude:
Kinetics and edges of solution cones:

Use of dimensionless groups
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Temporal Decomposition

TEMPORAL DECOMPOSITION

The  hierarchy of intrinsic times  can  be represented  by the time  axis. Fast
transients are characterized by the processes at the extreme left and slow
transients at the extreme right.  The  process time  scale,  i.e.  the  time  scale  of
interest, can be represented by a window of observation  on  this  time axis. One
can conceptualize this readily by looking at a three-dimensional system where
one time constant represents the fast motion; the second, the time scale of
interest; and the third, a slow motion.

The  terms which have time constants faster than the observed window can be
eliminated from the  dynamic description  as these terms are small. However,
the mechanisms which  have   transients slower  than  the observed time exhibit
high “inertia”' and hardly move from their initial state and can be considered
constants. One can thus remove slow or fast terms by the appropriate use of the
eigenrows and eigenvectors.
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...… and therefore all 
cellular activity 

is constrained by 
mass transfer

…hmmm interesting--let 
me think about that18 years ago...18 years ago...

I’m totally lost. 
Who are these guys?

1.2.

3.

A Personal Reflection
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Some Lessons: towards principles

• Importance of Constraints
– Cells are constrained in their behavior and seem to

push close to these constraints (‘life on the edge’)

– Extension of the concept of Mass Transfer limitations
• (E.N. Lightfoot)

• A large number of components (complex
genotypes) display relatively few overall types of
behaviors (phenotypes)
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Simplicity from complexity:
the evidence mounts

• Singular value decomposition of genome-scale
expression data  is in uncovering simple underlying
patterns

• Modal analysis of dynamic models of metabolism
shows simple dynamic structures 

• Robustness analysis of kinetic models of biochemical
systems models reveals insensitivity to individual
kinetic constants
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Simulation/Model-Driven Discovery

Genome Sequence
Information

In vitro/in vivo 
characteristics

Added Network
Function

Prediction

Revised ORF
Annotations

Refinement
Inferred Metabolic

Capabilities

Computational
Experiment

Biochemical
Experiment

in silico-based
hypothesis

in silico 
Models & Simulation

The model building process is an iterative one.  We must learn to embrace
failure.
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Summary

• Metabolic genotypes can be formulated based on annotated
sequence data

• Using the biochemical properties of the gene products and other
information, a genome-scale metabolic network can be formulated

• Flux distributions through this network cannot be uniquely
calculated, but optimal phenotypes can

• Testable experimental hypotheses can be generated in this way and
have been put forth for E. coli growth on acetate and succinate

• Further testing is needed to assess the generality of the approach

• It forms the basis for iterative model building within the
framework of applying successive constraints
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--The End--
 

Hougen 2000
Lectures


